Ganoderma — A Therapeutic Fungal Biofactory

Micoteca da Universidade do Minho, Centro de Engenharia Biológica, Campus de Gualtar, 4710-057 Braga, Portugal.
Phytochemistry (Impact Factor: 3.35). 10/2006; 67(18):1985-2001. DOI: 10.1016/j.phytochem.2006.07.004
Source: PubMed

ABSTRACT Ganoderma is a basidiomycete white rot fungus which has been used for medicinal purposes for centuries particularly in China, Japan and Korea. A great deal of work has been carried out on Ganoderma lucidum. The common names for preparations include Lingzhi, Munnertake, Sachitake, Reishi and Youngzhi. This review collates the publications detailing activities and compounds by representative species whilst considering the most valid claims of effectiveness. The biological activities reported of preparations from Ganoderma are remarkable and given most emphasis herein as distinct from structure/activity information. The metabolites consist of mainly polysaccharides and terpenoids. Many are activities against the major diseases of our time and so the present review is of great importance. The list of effects is huge ranging from anti-cancer to relieving blockages of the bladder. However, the reports have not all been tested scientifically with the convincing evidence is reserved for assays of pure compounds. It is a prime example of an ancient remedy being of great relevance to the modern era. There does appear to be an assumption that the therapeutic effects attributed to the fungus have been proven. The next step is to produce some effective medicines which may be hampered by problems of mass production.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The sequence-characterized amplified region (SCAR) is a valuable molecular technique for the genetic identification of any species. This method is mainly derived from the molecular cloning of the amplified DNA fragments achieved from the random amplified polymorphic DNA (RAPD). In this study, we collected DNA from 10 species of Ganoderma mushroom and amplified the DNA using an improved RAPD technique. The amplified fragments were then cloned into a T-vector, and positive clones were screened, indentified, and sequenced for the development of SCAR markers. After designing PCR primers and optimizing PCR conditions, 4 SCAR markers, named LZ1-4, LZ2-2, LZ8-2, and LZ9-15, were developed, which were specific to Ganoderma gibbosum (LZ1-4 and LZ8-2), Ganoderma sinense (LZ2-2 and LZ8-2), Ganoderma tropicum (LZ8-2), and Ganoderma lucidum HG (LZ9-15). These 4 novel SCAR markers were deposited into GenBank with the accession Nos. KM391935, KM391936, KM391937, and KM391938, respectively. Thus, in this study we developed specific SCAR markers for the identification and authentication of different Ganoderma species.
    Genetics and molecular research: GMR 05/2015; 14(2):5667 - 5676. DOI:10.4238/2015.May.25.19 · 0.85 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fourteen Ganoderma lucidum strains from different geographic regions were identified using ITS region sequencing. Based on the sequences obtained, the genomic relationship between the analyzed strains was determined. All G. lucidum strains were also genetically characterized using the AFLP technique. G. lucidum strains included in the analysis displayed an AFLP profile similarity level in the range from 9.6 to 33.9 %. Biolog FF MicroPlates were applied to obtain data on utilization of 95 carbon sources and mitochondrial activity. The analysis allowed comparison of functional diversity of the fungal strains. The substrate utilization profiles for the isolates tested revealed a broad variability within the analyzed G. lucidum species and proved to be a good profiling technology for studying the diversity in fungi. Significant differences have been demonstrated in substrate richness values. Interestingly, the analysis of growth and biomass production also differentiated the strains based on the growth rate on the agar and sawdust substrate. In general, the mycelial growth on the sawdust substrate was more balanced and the fastest fungal growth was observed for GRE3 and FCL192.
    BioMed Research International 02/2015; 2015. DOI:10.1155/2015/726149 · 2.71 Impact Factor