Article

Focal adhesion kinase targeting using in vivo short interfering RNA delivery in neutral liposomes for ovarian carcinoma therapy

Department of Psychology, University of Iowa, Iowa City, Iowa, United States
Clinical Cancer Research (Impact Factor: 8.19). 08/2006; 12(16):4916-24. DOI: 10.1158/1078-0432.CCR-06-0021
Source: PubMed

ABSTRACT Focal adhesion kinase (FAK) plays a critical role in ovarian cancer cell survival and in various steps in the metastatic cascade. Based on encouraging in vitro results with FAK silencing, we examined the in vivo therapeutic potential of this approach using short interfering RNA (siRNA) in the neutral liposome 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC).
Therapy experiments of FAK siRNA with or without docetaxel were done using human ovarian cancer cell lines SKOV3ip1, HeyA8, and HeyA8MDR in nude mice. Additional experiments with a cisplatin-resistant cell line (A2780-CP20) were also done. Assessments of angiogenesis (CD31), cell proliferation (proliferating cell nuclear antigen), and apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling) were done using immunohistochemical analysis.
A single dose of FAK siRNA-DOPC was highly effective in reducing in vivo FAK expression for up to 4 days as assayed by Western blot and immunohistochemical analysis. Therapy experiments were started 1 week after injection of the ovarian cancer cells. Treatment with FAK siRNA-DOPC (150 mug/kg twice weekly) reduced mean tumor weight by 44% to 72% in the three cell lines compared with the control group (Ps < 0.05 for HeyA8, A2780-CP20, and SKOV3ip1). When FAK siRNA-DOPC was combined with docetaxel, there was even greater reduction in mean tumor weight in all models (all Ps < 0.05). Similar results were observed in combination with cisplatin. Treatment with FAK siRNA-DOPC plus docetaxel resulted in decreased microvessel density, decreased expression of vascular endothelial growth factor and matrix metalloproteinase-9, and increased apoptosis of tumor-associated endothelial cells and tumor cells.
Taken together, these findings suggest that FAK siRNA-DOPC plus docetaxel or platinum might be a novel therapeutic approach against ovarian cancer.

0 Followers
 · 
85 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose:Cancer cells are highly dependent on folate metabolism, making them susceptible to drugs that inhibit folate receptor activities. Targeting overexpressed folate receptor alpha (FRα) in cancer cells offers a therapeutic opportunity. We investigated the functional mechanisms of MORAB-003 (farletuzumab), a humanized monoclonal antibody against FRα, in ovarian cancer models. Experimental Design: We first examined FRα expression in an array of human ovarian cancer cell lines and then assessed the in vivo effect of MORAB-003 on tumor growth and progression in several orthotopic mouse models of ovarian cancer derived from these cell lines. Molecular mechanisms of tumor cell death induced by MORAB-003 were investigated by cDNA and protein expression profiling analysis. Mechanistic studies were performed to determine the role of autophagy in MORAB-003-induced cell death. Results:MORAB-003 significantly decreased tumor growth in the high-FRα IGROV1 and SKOV3ip1 models but not in the low-FRα A2780 model. MORAB-003 reduced proliferation but had no significant effect on apoptosis. Protein expression and cDNA microarray analyses showed that MORAB-003 regulated an array of autophagy-related genes. It also significantly increased expression of LC3 isoform II and enriched autophagic vacuolization. Blocking autophagy with hydroxychloroquine or bafilomycin A1 reversed the growth inhibition induced by MORAB-003. Analysis of TCGA data showed that FOLR1 gene expression significantly correlated with shorter disease-free survival in patients with ovarian serous cystadenocarcinoma. Conclusions:MORAB-003 displays prominent antitumor activity in ovarian cancer models expressing FRα at high levels. Blockade of folate receptor by MORAB-003 induced sustained autophagy and suppressed cell proliferation. Copyright © 2014, American Association for Cancer Research.
    Clinical Cancer Research 11/2014; 21(2). DOI:10.1158/1078-0432.CCR-14-1578 · 8.19 Impact Factor
  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite being amongst the most common oncogenes in human cancer, to date there are no effective clinical options for inhibiting KRAS activity. We investigated whether systemically delivered KRAS siRNAs have therapeutic potential in KRAS mutated cancer models. We identified KRAS siRNA sequences with notable potency in knocking-down KRAS expression. Using lung and colon adenocarcinoma cell lines, we assessed anti-proliferative effects of KRAS silencing in vitro. For in vivo experiments, we used a nano-liposomal delivery platform, DOPC, for systemic delivery of siRNAs. Various lung and colon cancer models were utilized to determine efficacy of systemic KRAS siRNA based on tumor growth, development of metastasis and down-stream signaling. KRAS siRNA sequences induced >90% knock-down of KRAS expression, significantly reducing viability in mutant cell lines. In the lung cancer model, KRAS siRNA treatment demonstrated significant reductions in primary tumor growth and distant metastatic disease, while the addition of CDDP was not additive. Significant reductions in Ki-67 indices were seen in all treatment groups, while significant increases in caspase-3 activity was only seen in the CDDP treatment groups. In the colon cancer model, KRAS siRNA reduced tumor KRAS and pERK expression. KRAS siRNAs significantly reduced HCP1 subcutaneous tumor growth, as well as outgrowth of liver metastases. Our studies demonstrate a proof-of-concept approach to therapeutic KRAS targeting using nanoparticle delivery of siRNA. This study highlights the potential translational impact of therapeutic RNA interference, which may have broad applications in oncology, especially for traditional "undruggable" targets.
    Molecular Cancer Therapeutics 10/2014; DOI:10.1158/1535-7163.MCT-14-0074 · 6.11 Impact Factor