Synthesis, spectroscopic, thermal and antimicrobial studies of some novel metal complexes of Schiff base derived from [N-1-(4-methoxy-1,2,5-thiadiazol-3-yl)sulfanilamide] and 2-thiophene carboxaldehyde

Chemistry Department, Faculty of Science, Al-Azhar University (Girls), Nasr City, Cairo, Egypt.
Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy (Impact Factor: 2.35). 05/2007; 66(4-5):1271-8. DOI: 10.1016/j.saa.2006.05.030
Source: PubMed


Keeping in view the chemotherapeutic of the sulfa-drugs, Schiff base namely 2-thiophene carboxaldehyde-sulfametrole (HL) and its tri-positive and di-positive metal complexes have been synthesized and characterized by elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, mass spectra, UV-vis and thermal analysis (TGA and DrTG). The low molar conductance values suggest the non-electrolytic nature of these complexes. IR spectra show that HL is coordinated to the metal ions in a tetradentate manner through hetero five-membered ring-S and azomethine-N, enolic sulfonamide-OH and thiadiazole-N, respectively. Zn(II), Cd(II) and UO2(II) complexes are found to be diamagnetic (as expected). The proposed general formulae of the prepared complexes are [M2X4(HL)(H2O)4] (where M=Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II), X=Cl, [Fe2Cl6(HL)(H2O)2], [(FeSO4)2(HL)(H2O)4] and [(UO2)2(HL) (NO3)4].H2O. The thermal behaviour of these chelates shows that the hydrated complexes loss water of hydration in first step in case of uranium complexes followed loss coordinated water followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters, such as DeltaE*, DeltaH*, DeltaS*, and DeltaG* are calculated from the DrTG curves using Coats-Redfern method. The antimicrobial activity of the obtained products was performed using Chloramphenicol and Grisofluvine as standards, indicate that in some cases metallation increase activity than the ligand.

1 Follower
28 Reads
  • Source
    • "All complexes (2–6) were stable under N2 atmosphere and soluble in CHCl3, CH2Cl2, DMF, DMSO, and MeCN solvents except methanol, ethanol, hexane, pentane, THF, and ether. The molar conductances values of the complexes (2–6) are 9.1–3.1 Ω−1 cm2 mol−1, respectively, indicate that the complexes behave as nonelectrolytes [22]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Five new organotin(IV) complexes of 2-hydroxyacetophenone-2-methylphenylthiosemicarbazone [H(2)dampt, (1)] with formula [RSnCl(n-1)(dampt)] (where R = Me, n = 2 (2); R = Bu, n = 2 (3); R = Ph, n = 2 (4); R = Me(2), n = 1 (5); R = Ph(2), n = 1 (6)) have been synthesized by direct reaction of H(2)dampt (1) with organotin(IV) chloride(s) in absolute methanol. The ligand (1) and its organotin(IV) complexes (2-6) were characterized by CHN analyses, molar conductivity, UV-Vis, FT-IR, (1)H, (13)C, and (119)Sn NMR spectral studies. H(2)dampt (1) is newly synthesized and has been structurally characterized by X-ray crystallography. Spectroscopic data suggested that H(2)dampt (1) is coordinated to the tin(IV) atom through the thiolate-S, azomethine-N, and phenoxide-O atoms; the coordination number of tin is five. The in vitro antibacterial activity has been evaluated against Staphylococcus aureus, Enterobacter aerogenes, Escherichia coli, and Salmonella typhi. The screening results have shown that the organotin(IV) complexes (2-6) have better antibacterial activities and have potential as drugs. Furthermore, it has been shown that diphenyltin(IV) derivative (6) exhibits significantly better activity than the other organotin(IV) derivatives (2-5).
    Bioinorganic Chemistry and Applications 03/2012; 2012(1):698491. DOI:10.1155/2012/698491 · 1.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Supramolecular medicinal chemistry field has been a quite rapidly developing, increasingly active and newly rising interdiscipline which is the new expansion of supramolecular chemistry in pharmaceutical sciences, and is gradually becoming a relatively independent scientific area. Supramolecular drugs could be defined as medicinal supermolecules formed by two or more molecules through non-covalent bonds. So far a lot of supermolecules as chemical drugs have been widely used in clinics. Supermolecules as chemical drugs, i.e. supramolecular chemical drugs or supramolecular drugs, which might have the excellences of lower cost, shorter period, higher potential as clinical drugs for their successful research and development, may possess higher bioavailability, better biocompatibility and drug-targeting, fewer multidrug-resistances, lower toxicity, less adverse effect, and better curative effects as well as safety, and therefore exhibit wide potential application. These overwhelming advantages have drawn enormous special attention. This paper gives the definition of supramolecular drugs, proposes the concept of supramolecular chemical drugs, and systematically reviews the recent advances in the research and development of supermolecules, including organic and inorganic complex ones as chemical drugs in the area of antitumor, anti-inflammatory, analgesic, antimalarial, antibacterial, antifungal, antivirus, anti-epileptic, cardiovascular agents and magnetic resonance imaging agents and so on. The perspectives of the foreseeable future and potential application of supramolecules as chemical drugs are also presented.
    Science in China Series B Chemistry 04/2009; 52(4):415-458. DOI:10.1007/s11426-009-0103-2 · 1.20 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 3-amino-4-hydroxy benzenesulfonamide and its hydrochloride have been isolated in the crystalline state. Their crystal and molecular structures are determined by X-ray diffraction. The equilibrium between neutral tautomeric forms of the 3-amino-4-hydroxy benzenesulfonamide molecule is studied within the approximation of density functional theory (B3LYP/aug-cc-pVDZ). The constants of acid-base equilibrium of 3-amino-4-hydroxy benzenesulfonamide are deter-mined using spectrophotometry.
    Crystallography Reports 03/2013; 58(2). DOI:10.1134/S1063774513020120 · 0.49 Impact Factor
Show more