Article

Arterial versus capillary blood gases: a meta-analysis.

Department of Anesthesia, McGill University Health Center, Montreal, Quebec, Canada. <>
Respiratory Physiology & Neurobiology (Impact Factor: 1.97). 03/2007; 155(3):268-79. DOI: 10.1016/j.resp.2006.07.002
Source: PubMed

ABSTRACT A meta-analysis determined whether capillary blood gases accurately reflect arterial blood samples. A mixed effects model was used on 29 relevant studies obtained from a PubMed/Medline search. From 664 and 222 paired samples obtained from the earlobe and fingertip, respectively, earlobe compared to fingertip sampling shows that the standard deviation of the difference is about 2.5x less (or the precision is 2.5x better) in resembling arterial PO(2) over a wide range of arterial PO(2)'s (21-155 mm Hg ). The lower the arterial PO(2), the more accurate it is when predicting arterial PO(2) from any capillary sample (p<0.05). However, while earlobe sampling predicts arterial PO(2) (adjusted r(2)=0.88, mean bias=3.8 mm Hg compared to arterial), fingertip sampling does not (adjusted r(2)=0.48, mean bias=11.5 mm Hg compared to arterial). Earlobe sampling is slightly more accurate compared to fingertip sampling in resembling arterial PCO(2) (arterial versus earlobe, adjusted r(2)=0.94, mean bias=1.9 mm Hg ; arterial versus fingertip, adjusted r(2)=0.95, mean bias=2.2 mm Hg compared to arterial) but both sites can closely reflect arterial PCO(2) (880 total paired samples, range 10-114 mm Hg ). No real difference between sampling from the earlobe or fingertip were found for pH as both sites accurately reflect arterial pH over a wide range of pH (587 total paired samples, range 6.77-7.74, adjusted r(2)=0.90-0.94, mean bias=0.02). In conclusion, sampling blood from the fingertip or earlobe (preferably) accurately reflects arterial PCO(2) and pH over a wide range of values. Sampling blood, too, from earlobe (but never the fingertip) may be appropriate as a replacement for arterial PO(2), unless precision is required as the residual standard error is 6 mm Hg when predicting arterial PO(2) from an earlobe capillary sample.

Download full-text

Full-text

Available from: Gerald Stanley Zavorsky, Jan 05, 2014
3 Followers
 · 
234 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aims of this study were to examine selected respiratory and gasometric parameters during hyperventilation with and without isocapnia and to identify the possible mechanism by which isocapnic hyperventilation might be useful in the elimination of volatile substances, including CO. Ten healthy non-smoking volunteers were studied, and each underwent two procedures. During one session, CO2 was added to the respiratory circuit, and during the other session, only 100% O2 was used. The volunteers were coached to hyperventilate until the appearance of side effects. Isocapnic hyperventilation significantly increased alveolar minute ventilation and partial pressure of oxygen in arterialized capillary blood (paO2); to the best of our knowledge, these findings have not previously been reported. Isocapnic hyperventilation was associated with only mild side effects, such as dyspnea, increased respiratory effort and headache, in 30% of subjects. Side effects, including vertigo, paresthesias and muscle tremor, were present in 70% of the volunteers during hyperventilation with 100% O2, and these side effects forced them to limit their respiratory rates and tidal volumes. These increases in alveolar ventilation and the partial pressure of oxygen in the blood may play crucial roles in decreasing the half-time of carboxyhemoglobin, which is the primary goal of the treatment of CO poisoning.
    Respiratory Physiology & Neurobiology 09/2014; 201. DOI:10.1016/j.resp.2014.07.006 · 1.97 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The cardiopulmonary exercise test (CPET) is an important physiological investigation that can aid clinicians in their evaluation of exercise intolerance and dyspnea. Maximal oxygen consumption ([Formula: see text]) is the gold-standard measure of aerobic fitness and is determined by the variables that define oxygen delivery in the Fick equation ([Formula: see text] = cardiac output × arterial-venous O(2) content difference). In healthy subjects, of the variables involved in oxygen delivery, it is the limitations of the cardiovascular system that are most responsible for limiting exercise, as ventilation and gas exchange are sufficient to maintain arterial O(2) content up to peak exercise. Patients with lung disease can develop a pulmonary limitation to exercise which can contribute to exercise intolerance and dyspnea. In these patients, ventilation may be insufficient for metabolic demand, as demonstrated by an inadequate breathing reserve, expiratory flow limitation, dynamic hyperinflation, and/or retention of arterial CO(2). Lung disease patients can also develop gas exchange impairments with exercise as demonstrated by an increased alveolar-to-arterial O(2) pressure difference. CPET testing data, when combined with other clinical/investigation studies, can provide the clinician with an objective method to evaluate cardiopulmonary physiology and determination of exercise intolerance.
    11/2012; 2012:824091. DOI:10.1155/2012/824091
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to compare arterial and arterialized blood gases during normoxic and hypoxic exercise. In the same conditions, earlobe pulse oximetry O(2) saturation (Sp(O2)) was compared to arterial oxygen saturation (Sa(O2)). Ten men performed incremental cycle ergometer tests, in normoxia and hypoxia (FI(O2) = 0.127). Blood samples were drawn simultaneously from the radial artery and pre-warmed earlobe capillary blood of subjects at rest, submaximal and near maximal exercise. R(2) between the two samples were 0.99 for P(O2) and S(O2), 0.86 for P(CO2) and 0.97 between Sp(O2) and Sa(O2). Earlobe P(O2) mean was 4.4+/-3.6 mmHg lower than Pa(O2) in normoxia but in hypoxia only 1.1+/-2.2 mmHg low. The mean difference were low in normoxia between Sa(O2) and Sp(O2) and increased in hypoxia, were acceptable for P(CO2), S(O2), pH in all conditions. In conclusion, except for P(O2) in normoxia, pre-warmed earlobe capillary blood is a good substitute to arterial blood to allow measurement of blood gas values in normoxia and hypoxia at rest and exercise.
    Respiratory Physiology & Neurobiology 07/2010; 172(3):179-83. DOI:10.1016/j.resp.2010.05.017 · 1.97 Impact Factor