The expression of metastasis suppressor MIM/MTSS1 is regulated by DNA methylation

Department of Dermatology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
International Journal of Cancer (Impact Factor: 5.01). 11/2006; 119(10):2287-93. DOI: 10.1002/ijc.22106
Source: PubMed

ABSTRACT MIM/MTSS1 was initially described as a gene missing in invasive bladder cancer cell lines. Functional analysis revealed that MIM is an actin binding protein involved in the regulation of actin cytoskeleton dynamics. MIM was shown to be sonic hedgehog (Shh) signaling dependent and synergizes with the effects of Gli transcription factors. Overexpression of MIM in cell lines leads to the inhibition of cell proliferation. In this study, we showed that the inhibition of cell growth by MIM is anchorage independent. We identified and cloned the promoter region of MIM and located the main promoter activity to 276 bp of 5' flanking sequence sited within a CpG island. Analysis of DNA methylation using bisulphite sequencing revealed that MIM promoter is methylated in its 5' region in cells and tissue samples with reduced endogenous MIM expression. Using luciferase reporter assay, we demonstrated that nonmethylated MIM promoter has a similar activity in cell lines with different endogenous MIM expression. Inhibition of DNA methylation by 5-Aza-2'-deoxycytidine led to upregulation of MIM expression in a low expressing cell line. In conclusion, we clearly demonstrate here that the expression of metastasis suppressor MIM is regulated by DNA methylation of a CpG island within its promoter region.

Download full-text


Available from: Jochen Utikal, Sep 05, 2014
  • Source
    • "MTSS (metastasis suppressor) is a cell cycle gene which is methylated and repressed in FL and is re-activated by 5′-azaD. MTSS was previously shown to be regulated by DNA methylation in carcinoma cell lines (Utikal et al., 2006). BUB3 (budding inhibited by benzimadazole), which is required for precise kinetochore-microtubule interactions, and MAD1L1 (mitotic arrest deficiency like-1), a cellular antagonist of MYC, are mitotic checkpoint genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput microarray technologies were used to study DNA methylation accompanied by transcriptional changes in follicular lymphoma (FL). Using Methylated CpG Island Amplification with Microarrays to study CpG Island DNA methylation in FL, we discovered widespread hypermethylation of homeobox genes and previously identified targets of polycomb repressive complex 2 (PRC2) in cell lines and primary tumors, but not in benign follicular hyperplasia (BFH). DNA methylation for HOXA11, HOXD10, HOXB7, HOXC12, PAX6, LHX9, SFMBT2, EN2, and PAX7 was independently validated in the RL cell line and HOXA11, HOXD10, PAX6, and EN2 in primary tumors. Combined Bisulfite Restriction Analysis (COBRA) also established DNA methylation for the previously identified PRC2 targets DCC, DES, GAD2, AQP5, GPR61, GRIA4, GJD2, and AMPH in FL but not in BFH. Gene expression analyses revealed 411 genes that were hypermethylated and transcriptionally repressed in RL, 74% of which were reactivated by the demethylating agent 5-aza-2'-deoxycytidine (5-azaD) plus or minus the histone deacetylase inhibitor trichostatin A (TSA). Forty genes were also downregulated in primary FL. Our results suggest that extensive hypermethylation in promoters of polycomb target genes is a characteristic of FL and that loss of expression of certain SUZ12 target genes could be functionally relevant for lymphomagenesis.
    Genes Chromosomes and Cancer 09/2009; 48(9):828-41. DOI:10.1002/gcc.20687 · 3.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein "missing in metastasis", known as MIM, has been characterised as an actin-binding scaffold protein that may be involved in cancer metastasis. In this paper, we summarise the literature surrounding the role of MIM in actin and membrane dynamics and in signalling to transcription via the sonic hedgehog pathway. MIM is postulated to have many potential activities, including a BAR-like domain termed the IMD (IRS-MIM domain), which can interact with membranes to induce membrane deformation and also with actin and the small GTPase Rac. How this multifunctional protein and its close relative ABBA-1 regulate cellular behaviour is still very much an open question.
    Journal of Molecular Medicine 07/2007; 85(6):569-76. DOI:10.1007/s00109-007-0207-0 · 4.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genomic changes in chromosome 8 are commonly observed in breast cancer cell lines and tumors. To fine map such genomic changes by comparative genomic hybridization (CGH), a high resolution (100 kb) chromosome 8 array that can detect single copy changes was developed using Phi29 DNA polymerase amplified BAC (bacterial artificial chromosome) DNA. The BAC array CGH resolved the two known amplified regions (8q21 and 8q24) of a breast cancer cell line (SKBR3) into nine separate regions including six amplicons and three deleted regions, all of which were verified by Fluorescence in situ hybridization. The extent of the gain/loss for each region was validated by qPCR. CGH was performed with a total of 8 breast cancer cell lines, and common regions of genomic amplification/deletion were identified by segmentation analysis. A 1.2-Mb region (125.3-126.5 Mb) and a 1.0-Mb region (128.1-129.1 Mb) in 8q24 were amplified in 7/8 cell lines. A global expression analysis was performed to evaluate expression changes associated with genomic amplification/deletion: a novel gene, TRMT12 (at 125.5 Mb), amplified in 7/8 cell lines, showed highest expression in these cell lines. Further analysis by RT-qPCR using RNA from 30 breast tumors showed that TRMT12 was overexpressed >2 fold in 87% (26/30) of the tumors. TRMT12 is a homologue of a yeast gene encoding a tRNA methyltransferase involved in the posttranscriptional modification of tRNA(Phe), and exploring the biological consequence of its altered expression, may reveal novel pathways in tumorigenesis. This article contains Supplementary Material available at
    Genes Chromosomes and Cancer 07/2007; 46(7):694-707. DOI:10.1002/gcc.20454 · 3.84 Impact Factor