Article

Cytoplasmic tail of phospholemman interacts with the intracellular loop of the cardiac Na+/Ca2+ exchanger.

Department of Cellular and Molecular Physiology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
Journal of Biological Chemistry (Impact Factor: 4.65). 11/2006; 281(42):32004-14. DOI: 10.1074/jbc.M606876200
Source: PubMed

ABSTRACT Phospholemman (PLM), a member of the FXYD family of small ion transport regulators, inhibits cardiac Na+/Ca2+ exchanger (NCX1). NCX1 is made up of N-terminal domain consisting of the first five transmembrane segments (residues 1-217), a large intracellular loop (residues 218-764), and a C-terminal domain comprising the last four transmembrane segments (residues 765-938). Using glutathione S-transferase (GST) pull-down assay, we demonstrated that the intracellular loop, but not the N- or C-terminal transmembrane domains of NCX1, was associated with PLM. Further analysis using protein constructs of GST fused to various segments of the intracellular loop of NCX1 suggest that PLM bound to residues 218-371 and 508-764 but not 371-508. Split Na+/Ca2+ exchangers consisting of N- or C-terminal domains with different lengths of the intracellular loop were co-expressed with PLM in HEK293 cells that are devoid of endogenous PLM and NCX1. Although expression of N-terminal but not C-terminal domain alone resulted in correct membrane targeting, co-expression of both N- and C-terminal domains was required for correct membrane targeting and functional exchange activity. NCX1 current measurements indicate that PLM decreased NCX1 current only when the split exchangers contained residues 218-358 of the intracellular loop. Co-immunoprecipitation experiments with PLM and split exchangers suggest that PLM associated with the N-terminal domain of NCX1 when it contained intracellular loop residues 218-358. TM43, a PLM mutant with its cytoplasmic tail truncated, did not co-immunoprecipitate with wild-type NCX1 when co-expressed in HEK293 cells, confirming little to no interaction between the transmembrane domains of PLM and NCX1. We conclude that PLM interacted with the intracellular loop of NCX1, most likely at residues 218-358.

0 Bookmarks
 · 
72 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ∼50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.
    AJP Heart and Circulatory Physiology 11/2011; 302(3):H770-81. · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms.
    PLoS ONE 01/2014; 9(7):e103277. · 3.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: FXYD proteins are a group of short single-span transmembrane proteins that interact with the Na(+)/K(+) ATPase and modulate its kinetic properties. This study characterizes intracellular trafficking of two FXYD family members, FXYD1 (phospholemman (PLM)) and FXYD7. Surface expression of PLM in Xenopus oocytes requires coexpression with the Na(+)/K(+) ATPase. On the other hand, the Na(+)/Ca(2+) exchanger, another PLM-interacting protein could not drive it to the cell surface. The Na(+)/K(+) ATPase-dependent surface expression of PLM could be facilitated by either a phosphorylation-mimicking mutation at Thr-69 or a truncation of three terminal arginine residues. Unlike PLM, FXYD7 could translocate to the cell surface of Xenopus oocytes independently of the coexpression of α1β1 Na(+)/K(+) ATPase. The Na(+)/K(+) ATPase-independent membrane translocation of FXYD7 requires O-glycosylation of at least two of three conserved threonines in its ectodomain. Subsequent experiments in mammalian cells confirmed the role of conserved extracellular threonine residues and demonstrated that FXYD7 protein, in which these have been mutated to alanine, is trapped in the endoplasmic reticulum and Golgi apparatus.
    Journal of Biological Chemistry 04/2012; 287(25):21130-41. · 4.65 Impact Factor

Full-text (2 Sources)

View
15 Downloads
Available from
May 30, 2014