Field infestation, life history and demographic parameters of the fruit fly Bactrocera invadens (Diptera : Tephritidae) in Africa

International Centre of Insect Physiology and Ecology, PO Box 30772-00100 GPO, Nairobi, Kenya.
Bulletin of Entomological Research (Impact Factor: 1.91). 08/2006; 96(4):379-86. DOI: 10.1079/BER2006442
Source: PubMed


Field infestation rates of an invasive fruit fly species, Bactrocera invadens Drew Tsuruta & White on mango was determined at different localities in Kenya. At most of the locations and especially at low elevations, B. invadens frequently shared the same fruit with the indigenous fruit fly species Ceratitis cosyra (Walker) but often occurred at higher numbers than C. cosyra. The level of infestation varied with location ranging from 3.0 to 97.2 flies per kg of fruit. There was a significant inverse relationship between numbers of flies per kg of fruit and elevation at which fruit was collected, suggesting that B. invadens is a predominantly lowland pest. On an artificial diet, development of B. invadens immatures lasted 25 days; egg incubation required 1.2 days, larval development 11.1 days and puparia-adult development 12.4 days. About 55% of eggs developed to the adult stage. Life expectancy at pupal eclosion was 75.1 days in females and 86.4 days in males. Average net fecundity and net fertility were 794.6 and 608.1 eggs, respectively, while average daily oviposition was 18.2 eggs. Daily population increase was 11% and mean generation time was 31 days. Results are discussed in relation to the biology and ecology of the insect and in the development of mass rearing and control measures for B. invadens.

67 Reads
  • Source
    • "In Africa, it is generally considered a lowland pest, decreasing in abundance with an increase in altitude (Ekesi et al., 2006; Mwatawala et al., 2006a, b; Geurts et al., 2012). In equatorial regions such as Tanzania and Kenya, it has been found to occur at altitudes of above 1600 m above sea level (Ekesi et al., 2006; Geurts et al., 2012). The potential geographical distribution of B. dorsalis has previously been modelled using two correlative species distribution models (GARP and MaxEnt) trained with known occurrence records in Africa and Asia (De Meyer et al., 2010). "
    [Show abstract] [Hide abstract]
    ABSTRACT: A species in the Bactrocera dorsalis (Hendel) complex was detected in Kenya during 2003 and classified as Bactrocera invadens Drew, Tsuruta & White. Having spread rapidly throughout Africa, it threatens agriculture due to crop damage and loss of market access. In a recent revision of the B. dorsalis complex, B. invadens was incorporated into the species B. dorsalis. The potential distribution of B. dorsalis has been previously modelled. However, previous models were based on presence data and did not incorporate information on the seasonal phenology of B. dorsalis, nor on the possible influence that irrigation may have on its distribution. Methyl eugenol-baited traps were used to collect B. dorsalis in Africa. Seasonal phenology data, measured as fly abundance throughout the year, was related to each location's climate to infer climatic growth response parameters. These functions were used along with African distribution records and development studies to fit the niche model for B. dorsalis, using independent global distribution records outside Africa for model validation. Areas at greatest risk of invasion by B. dorsalis are South and Central America, Mexico, southernmost USA, parts of the Mediterranean coast, parts of Southern and Eastern Australia and New Zealand's North Island. Under irrigation, most of Africa and Australia appear climatically suitable.
    Bulletin of entomological research 10/2015; DOI:10.1017/S0007485315000693 · 1.91 Impact Factor
  • Source
    • "From an economic perspective, they 1) inflict extensive direct damage to hundreds of species of fruits, 2) instigate quarantine restrictions on infested areas, requiring that commercial fruits undergo protective and quarantine treatment prior to export, and 3) provide a breeding reservoir for introduction of invasive fruit fly species into other parts of the world (Vargas et al. 2008). The recent introduction of Bactrocera invadens Drew, Tsuruta & White into Africa and Bactrocera carambolae Drew & Hancock into South America, coupled with the continuous threats of introductions elsewhere, has increased the need for effective suppression methods (Malavasi et al. 2000, Ekesi et al. 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ammonia and its derivatives are used by female fruit flies (Diptera: Tephritidae) as volatile cues to locate protein-rich food needed to produce their eggs. This need for external protein sources has led to the development of behaviorally based control strategies such as food-based lures and insecticidal baits targeting pestiferous fruit fly species. In field cage studies conducted in Hawaii, we examined the behavioral response of laboratory-reared male and female Mediterranean fruit fly, Ceratitis capitata (Wiedemann), to seven commercially available protein baits and to beer waste, a relatively inexpensive and readily available substance. Each material was tested alone or in combination with either ammonium acetate or ammonium carbonate. For the majority of baits evaluated, the presence of ammonium acetate, but not ammonium carbonate, elicited a significantly greater level of response of female C. capitata compared with the protein baits alone. The addition of ammonium acetate to selected baits increased bait attractiveness to a level comparable with that elicited by the most widely used spinosad-based protein bait, GF-120. Our findings indicate that the addition of ammonium acetate to commercially available proteinaceous baits and to beer waste can greatly improve their attractiveness to C. capitata, potentially increasing the bait’s effectiveness for fruit fly monitoring and suppression.
    Journal of Economic Entomology 03/2015; DOI:10.1093/jee/tov046 · 1.51 Impact Factor
  • Source
    • "Another study from Tanzania revealed that the highest damage of mango fruits was by B. invadens (Mwatawala et al. 2006). Severe damage of fruits due to B. invadens was reported in Kenya (Ekesi et al. 2006) and Tanzania (Mwatawala et al. 2006, 2009). Many hosts were recorded for B. invadens, which enables the species to attack a wide range of wild and cultivated fruits in Benin and Cameroon (Goergen et al. 2011). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Bactrocera invadens, the Asian fruit fly, was first reported in Kenya in 2003, and it spread fast to most tropical countries in Africa. To our knowledge, there is no detailed data on the fruit damage and status of fruit flies in Arba Minch and elsewhere in Ethiopia. Hence, information on the species composition and pest status of the fruit fly species is urgent to plan management strategies in the area. Fruit flies were captured using male parapheromone-baited traps. Matured mango (Mangifera indica) fruits were collected from randomly selected mango trees and incubated individually in cages (15 by 15 by 15 cm) with sandy soil. B. invadens was the predominant (96%; 952 of 992) captured species and the only fruit fly species emerging from mango fruits incubated in the laboratory. The mean number of adult B. invadens emerging per mango fruit was 35.25, indicating that the species is the most devastating mango fruit fly in the area. The loss due to this species would be serious if no management strategies are implemented. © The Author 2015. Published by Oxford University Press on behalf of the Entomological Society of America.
    Journal of Insect Science 01/2015; 15(1). DOI:10.1093/jisesa/ieu166 · 1.03 Impact Factor
Show more