Gray matter abnormalities in autism spectrum disorder revealed by T2 relaxation - Reply

Department of Psychology, University of Washington Seattle, Seattle, Washington, United States
Neurology (Impact Factor: 8.29). 09/2006; 67(4):632-6. DOI: 10.1212/01.wnl.0000229923.08213.1e
Source: PubMed


To perform quantitative T2 relaxation measurements to evaluate cerebral water content in children with autism.
Sixty 2- to 4-year-old children with autism spectrum disorder (ASD), 16 age-matched children with idiopathic developmental delay (DD), and 10 children with typical development (TD) were scanned on a 1.5 T GE MRI scanner to obtain dual-echo fast spin echo images (2.5 mm thick, 0-mm gap). Images were segmented into gray and white matter and used to mask regions of interest for calculating T2 for each tissue type. Analysis of variance, covarying for age and sex, was used to compare T2 between groups, and correlations were used to compare T2 to IQ measures.
Children with ASD had prolonged cortical gray matter T2, but white matter T2 was not significantly different, compared with the children with TD. T2 was prolonged in cortical gray matter and white matter in children with DD compared with children with ASD or TD. Significant interactions between T2 measures and IQ were not observed.
Prolonged gray and white matter T2 in the children with developmental delay likely represents a delay in neuronal development and maturation. Prolonged T2 in gray matter, but not white matter, observed in children with autism spectrum disorder may signify abnormal developmental processes specific to autism.

Download full-text


Available from: Dennis W W Shaw,
  • Source
    • "Abnormal growth was most pronounced in temporal grey matter volumes consistent with earlier findings in children with ASD under the age of two [114] and over [95, 106]. Therefore, abnormal early development of grey matter is linked with ASD (i.e., [115]) in children between two and four years old. Numerous conditions of atypical development can lead to autism, in particular fragile X syndrome (FXS), which is considered to be the most commonly known single-gene cause of autism. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the widely-held understanding that the biological changes that lead to autism usually occur during prenatal life, there has been relatively little research into the functional development of the brain during early infancy in individuals later diagnosed with autism spectrum disorder (ASD). This review explores the studies over the last three years which have investigated differences in various brain regions in individuals with ASD or who later go on to receive a diagnosis of ASD. We used PRISMA guidelines and selected published articles reporting any neurological abnormalities in very early childhood in individuals with or later diagnosed with ASD. Various brain regions are discussed including; the amygdala; cerebellum; frontal cortex and lateralised abnormalities of the temporal cortex during language processing. This review discusses studies investigating head circumference, electrophysiological markers and inter-hemispheric synchronisation. All the recent findings from the beginning of 2009 across these different aspects of defining neurological abnormalities are discussed in light of earlier findings. The studies across these different areas reveal the existence of atypicalities in the first year of life, well before ASD is reliably diagnosed. Cross-disciplinary approaches are essential to elucidate the pathophysiological sequence of events that lead to ASD.
    Behavioural neurology 08/2013; 2014(3). DOI:10.3233/BEN-130350 · 1.45 Impact Factor
    • "Volumetric studies of ASD have shown that some brain regions are disproportionately enlarged (Aylward et al., 2002; Courchesne et al., 2001; Hazlett et al., 2005; Kemper and Bauman, 1998; Redcay and Courchesne, 2005; Sparks et al., 2002) and grow out of synchrony with other brain regions (Hardan et al., 2006; Langen et al., 2007). Increased brain size in ASD during early development has implicated abnormalities of both grey matter (Friedman et al., 2006; Petropoulos et al., 2006) white matter, particularly in the superficial/radiate white matter regions of the cerebrum (Herbert et al., 2004) and in the frontal lobes (Carper et al., 2002). Although these white matter volumetric findings do not directly support abnormal connectivity among brain structures in autism, the abnormal growth patterns are consistent with this consideration. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities in structural and functional connectivity have been reported in autism spectrum disorders (ASD) across a wide age range. However, developmental changes in white matter microstructure are poorly understood. We used a cross-sectional design to determine whether white matter abnormalities measured using diffusion tensor imaging (DTI) were present in adolescents and adults with ASD and whether age-related changes in white matter microstructure differed between ASD and typically developing (TD) individuals. Participants included 28 individuals with ASD and 33 TD controls matched on age and IQ and assessed at one time point. Widespread decreased fractional anisotropy (FA), and increased radial diffusivity (RaD) and mean diffusivity (MD) were observed in the ASD group compared to the TD group. In addition, significant group-by-age interactions were observed in FA, RaD, and MD in all major tracts except the brain stem, indicating that age-related changes in white matter microstructure differed between the groups. We propose that white matter microstructural changes in ASD may reflect myelination and/or other structural differences including differences in axonal density/arborization. In addition, we suggest that white matter microstuctural impairments may be normalizing during young adulthood in ASD. Future longitudinal studies that include a wider range of ages and more extensive clinical characterization will be critical for further uncovering the neurodevelopmental processes unfolding during this dynamic time in development.
    Brain research 08/2012; 1479:1-16. DOI:10.1016/j.brainres.2012.07.056 · 2.84 Impact Factor
  • Source
    • "In previously reported work (Sparks et al., 2002), cerebral and cerebellum volumes were obtained using a stereotaxic grid (Gunderson & Jensen, 1987). In the current study, cerebral and cerebellar measurements were obtained using a semiautomated histogram approach to improve measurement sensitivity for small volume differences (Friedman et al., 2006; Petropoulos et al., 2006). Cerebral volume included the basal ganglia and corpus callosum, and excluded the ventricles, brain stem and cerebellum. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerebellar histopathological abnormalities have been well documented in autism, although findings of structural differences, as determined by magnetic resonance imaging, have been less consistent. This report explores specific cerebellar vermal structures and their relation with severity of symptoms and cognitive functioning in young children with autism spectrum disorder (ASD). Children with ASD aged 3 to 4 years were compared with typically developing children (TD) matched to the ASD children on chronological age, and children with developmental delay (DD) matched to the ASD children on both chronological and mental age. Volumes of the cerebellum and midsagittal vermal areas were measured from 3-D T1-weighted magnetic resonance images. Children with ASD had reduced total vermis volumes compared with children with TD after controlling for age, sex, and overall cerebral volume or cerebellum volume. In particular, the vermis lobe VI-VII area was reduced in children ASD compared with TD children. Children with DD had smaller total vermis areas compared with children with ASD and TD. Within the ASD group, cerebellar measurements were not correlated with symptom severity, or verbal, non-verbal or full scale IQ. Within the DD group, larger cerebellar measurements were correlated with fewer impairments. The specific relation between altered cerebellar structure and symptom expression in autism remains unclear.
    Psychiatry Research 03/2009; 172(1):61-7. DOI:10.1016/j.pscychresns.2008.06.001 · 2.47 Impact Factor
Show more