Co-localization of glutamic acid decarboxylase and phosphate-activated glutaminase in neurons of lateral reticular nucleus in feline thalamus.

Psychiatry and Neurobiology, Mental Retardation Research Center, UCLA Geffen School of Medicine, Room 301 Neuroscience Research Building, 635 Charles Young Drive South, Los Angeles, California 90095, USA.
Neurochemical Research (Impact Factor: 2.55). 03/2007; 32(2):177-86. DOI: 10.1007/s11064-006-9126-7
Source: PubMed

ABSTRACT Immunohistochemical methods were used to label singly and/or in combination glutamic acid decarboxylase (GAD, the sole synthesizing enzyme for the inhibitory neurotransmitter gamma-aminobutyric acid) and phosphate-activated glutaminase (GLN, a synthesizing enzyme for glutamate) in neurons of lateral reticular nucleus (LRN) of thalamus of adult cats. (1) GAD- and GLN-immunoreactivity (IR) exhibited matching regional patterns of organization within LRN. (2) GAD- and GLN-IR co-localized within most if not all LRN neuronal cell bodies as shown by light microscopy. (3) GAD- and GLN-IR had distinct subcellular localizations in LRN neurons as shown by correlative light/electron microscopy. LRN neurons are important conceptual models where strongly inhibitory cells receive predominant excitatory glutamatergic afferents (from neocortex). Consistent with known actions of intermediary astrocytes, LRN neurons demonstrate GLN enrichment synergistically coupled with glutamatergic innervation to supplement the glutamate pool for GABA synthesis (via GAD) and for metabolic utilization (via the GABA shunt/tricarboxylic acid cycle) but not, apparently, for excitatory neurotransmission.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most intercellular glutamate signaling in the nervous system occurs at synapses. Some intercellular glutamate signaling occurs outside synapses, however, and even outside the nervous system where high ambient extracellular glutamate might be expected to preclude the effectiveness of glutamate as an intercellular signal. Here, I briefly review the types of intercellular glutamate signaling in the nervous system and beyond, with emphasis on the diversity of signaling mechanisms and fundamental unanswered questions.
    ACS Chemical Neuroscience 01/2010; 1(1):4-12. DOI:10.1021/cn900006n · 4.21 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Morphological plasticity in response to estradiol is a hallmark of astrocytes in the arcuate nucleus. The functional consequences of these morphological changes have remained relatively unexplored. Here we report that in the arcuate nucleus estradiol significantly increased the protein levels of the two enzymes in the glutamate-glutamine cycle, glutamine synthetase and glutaminase. We further demonstrate that these estradiol-mediated changes in the enzyme protein levels may underlie functional changes in neurotransmitter availability as: 1) total glutamate concentration in the arcuate nucleus was significantly increased and 2) microdialysis revealed a significant increase in extracellular glutamate levels after a synaptic challenge in the presence of estradiol. These data implicate the glutamate-glutamine cycle in the generation and/or maintenance of glutamate and suggest that the difference in extracellular glutamate between estradiol- and oil-treated animals may be related to an increased efficiency of the cycle enzymes. In vivo enzyme activity assays revealed that the estradiol mediated increase in glutamate-glutamine cycle enzymes in the arcuate nucleus led to an increase in gamma-aminobutyric acid and is likely not related to the increase in extracellular glutamate. Thus, we have observed two-independent effects of estradiol on amino acid neurotransmission in the arcuate nucleus. These data suggest a possible functional consequence of the well-established changes in glial morphology that occur in the arcuate nucleus in the presence of estradiol and suggest the importance of neuronal-glial cooperation in the regulation of hypothalamic functions such as food intake and body weight.
    Endocrinology 04/2009; 150(7):3237-44. DOI:10.1210/en.2008-1701 · 4.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression of glutaminase in glial cells has been a controversial issue and matter of debate for many years. Actually, glutaminase is essentially considered as a neuronal marker in brain. Astrocytes are endowed with efficient and high capacity transport systems to recapture synaptic glutamate which seems to be consistent with the absence of glutaminase in these glial cells. In this work, a comprehensive study was devised to elucidate expression of glutaminase in neuroglia and, more concretely, in astrocytes. Immunocytochemistry in rat and human brain tissues employing isoform-specific antibodies revealed expression of both Gls and Gls2 glutaminase isozymes in glutamatergic and GABAergic neuronal populations as well as in astrocytes. Nevertheless, there was a different subcellular distribution: Gls isoform was always present in mitochondria while Gls2 appeared in two different locations, mitochondria and nucleus. Confocal microscopy and double immunofluorescence labeling in cultured astrocytes confirmed the same pattern previously seen in brain tissue samples. Astrocytic glutaminase expression was also assessed at the mRNA level, real-time quantitative RT-PCR detected transcripts of four glutaminase isozymes but with marked differences on their absolute copy number: the predominance of Gls isoforms over Gls2 transcripts was remarkable (ratio of 144:1). Finally, we proved that astrocytic glutaminase proteins possess enzymatic activity by in situ activity staining: concrete populations of astrocytes were labeled in the cortex, cerebellum and hippocampus of rat brain demonstrating functional catalytic activity. These results are relevant for the stoichiometry of the Glu/Gln cycle at the tripartite synapse and suggest novel functions for these classical metabolic enzymes. GLIA 2014
    Glia 03/2015; 63(3):365-382. DOI:10.1002/glia.22758 · 5.47 Impact Factor