Article

Identification of two sex-specific quantitative trait loci in chromosome 11q for hip bone mineral density in Chinese.

Department of Medicine, The University of Hong Kong, Hong Kong, SAR, China.
Human Heredity (Impact Factor: 1.64). 02/2006; 61(4):237-43. DOI: 10.1159/000095216
Source: PubMed

ABSTRACT Chromosome 11q has not only been found to contain mutations responsible for the several Mendelian disorders of the skeleton, but it has also been linked to bone mineral density (BMD) variation in several genome-wide linkage studies. Furthermore, quantitative trait loci (QTL) affecting BMD in inbred mice and baboons have been mapped to a region syntenic to human chromosome 11q. The aim of the present study is to determine whether there is a QTL for BMD variation on chromosome 11q in the Chinese population.
Nineteen microsatellite markers were genotyped for a 75 cM region on 11q13-25 in 306 Chinese families with 1,459 subjects. BMD (g/cm(2)) was measured by DXA. Linkage analyses were performed using the variance component linkage analysis method implemented in Merlin software.
For women, a maximum LOD score of 1.62 was achieved at 90.8 cM on 11q21 near the marker D11S4175 for femoral neck BMD; LOD scores greater than 1.0 were observed on 11q13 for trochanter BMD. For men, a maximum LOD score of 1.57 was achieved at 135.8 cM on 11q24 near the marker D11S4126 for total hip BMD.
We have not only replicated the previous linkage finding on chromosome 11q but also identified two sex-specific QTL that contribute to BMD variation in Chinese women and men.

0 Followers
 · 
98 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate linkage to chromosome 1q and 11q region for lumbar spine, femoral neck and total body BMD and volumetric BMD in Brazilian sister adolescents aged 10-20-year-old and 57 mothers. We evaluated 161 sister pairs (n=329) aged 10-20 years old and 57 of their mothers in this study. Physical traits and lifestyle factors were collected as covariates for lumbar spine (LS), femoral neck (FN) and total body (TB) BMD and bone mineral apparent density (BMAD). We selected nine microsatellite markers in chromosome 1q region (spanning nearly 33cM) and eight in chromosome 11q region (spanning nearly 34cM) to perform linkage analysis. The highest LOD score values obtained from our data were in sister pairs LS BMAD analysis. Their values were: 1.32 (P<0.006), 2.61 (P<0.0002) and 2.44 (P<0.0004) in D1S218, D1S2640 and D1S2623 markers, respectively. No significant LOD score was found with LS and FN BMD/BMAD in chromosome 11q region. Only TB BMD showed significant linkage higher than 1.0 for chromosome 11q region in the markers D11S4191 and D11S937. Our results provided suggestive linkage for LS BMAD at D1S2640 marker in adolescent sister pairs and suggest a possible candidate gene (LHX4) related to adolescent LS BMAD in this region. These results reinforce chromosome 1q21-23 as a candidate region to harbor one or more bone formation/maintenance gene. In the other hand, it did not repeat for chromosome 11q12-13 in our population.
    Joint, bone, spine: revue du rhumatisme 07/2011; 79(3):256-61. DOI:10.1016/j.jbspin.2011.05.007 · 3.22 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Osteoporosis (OP) is an age-related disease associated with increased production of reactive oxygen species (ROS) and a reduction in antioxidant defense system, such as low activity of glutathione S-transferase (GST) family. The enzyme activity of the member of GSTs, GSTP1, depends on gene polymorphisms such as: Ala114Val and Ile105Val. The aim of this study was to evaluate the association between genetic polymorphisms of the GSTP1 gene and BMD variation and biochemical bone remodeling markers in 523 Slovenian pre- and post-menopausal women. Observational pilot study in a representative cohort of Slovenian patients with adjustment for potential confounders (age, height, weight, years since menopause, smoking status and glucocorticoid use) using univariate one-way and two-way analyses. Ala114Val and Ile105Val polymorphisms genotypes of GSTP1 gene, bone mineral density (BMD) values of total hip (_th), femoral neck (_fn) and lumbar spine (_ls), plasma osteocalcin (OC), serum bone alkaline phosphatase (BALP), free soluble RANKL and serum osteoprotegerin (sOPG) concentrations were determined. Our results show that the Ala114Val heterozygotes are (borderline) significantly associated with higher concentrations of pOC (p=0.052) and decreased BMD_fn values (p=0.053) and the same trend is shown for BMD_th and BMD_ls values in osteopenic postmenopausal women. Furthermore, significantly higher concentrations of pOC were determined among Val allele carriers of Ile105Val gene polymorphism (p=0.037) and in carriers with the absent 114Ala-105Ile haplotype combination, again in osteopenic post-menopausal women. In addition, in pre-menopausal women the significant associations between sOPG and Ala114Val genotypes subgroups and between sBALP and Ile105Val genotypes subgroups, alone or in combination with Ala114Val, were determined (0.032, 0.026 and 0.008, respectively). Since significant associations existed in Ala114Val genotype and 114Ala-105Ile haplotype subgroups, these variations can be useful for determining low BMD and high pOC risk in postmenopausal women.
    Maturitas 02/2012; 71(2):180-7. DOI:10.1016/j.maturitas.2011.11.023 · 2.86 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several genome-wide association studies (GWAS) have been performed to identify genes contributing to bone mineral density (BMD), typically in samples of elderly women and men. The objective of the study was to identify genes contributing to BMD in premenopausal women. GWAS using the Illumina 610Quad array in premenopausal European-American (EA) women and replication of the top 50 single-nucleotide polymorphisms (SNPs) for two BMD measures in African-American (AA) women. Subjects included 1524 premenopausal EA women aged 20-45 yr from 762 sibships and 669 AA premenopausal women aged 20-44 yr from 383 sibships. There were no interventions. BMD was measured at the lumbar spine and femoral neck by dual-energy x-ray absorptiometry. Age- and weight-adjusted BMD values were tested for association with each SNP, with P values determined by permutation. SNPs in CATSPERB on chromosome 14 provided evidence of association with femoral neck BMD (rs1298989, P = 2.7 x 10(-5); rs1285635, P = 3.0 x 10(-5)) in the EA women, and some supporting evidence was also observed with these SNPs in the AA women (rs1285635, P = 0.003). Genes identified in other BMD GWAS studies, including IBSP and ADAMTS18, were also among the most significant findings in our GWAS. Evidence of association to several novel loci was detected in a GWAS of premenopausal EA women, and SNPs in one of these loci also provided supporting evidence in a sample of AA women.
    The Journal of Clinical Endocrinology and Metabolism 02/2010; 95(4):1802-9. DOI:10.1210/jc.2009-1903 · 6.31 Impact Factor