A critical analysis of the role of the neurotrophic protein S100B in acute brain injury.

Department of Neurosurgery, Georg August University, Göttingen, Germany.
Journal of Neurotrauma (Impact Factor: 3.97). 09/2006; 23(8):1185-200. DOI: 10.1089/neu.2006.23.1185
Source: PubMed

ABSTRACT We provide a critical analysis of the relevance of S100B in acute brain injury emphazising the beneficial effect of its biological properties. S100B is a calcium-binding protein, primarily produced by glial cells, and exerts auto- and paracrine functions. Numerous reports indicate, that S100B is released after brain insults and serum levels are positively correlated with the degree of injury and negatively correlated with outcome. However, new data suggest that the currently held view, that serum measurement of S100B is a valid "biomarker" of brain damage in traumatic brain injury (TBI), does not acknowlege the multifaceted release pattern and effect of the blood-brain barrier disruption upon S100B levels in serum. In fact, serum and brain S100B levels are poorly correlated, with serum levels dependent primarily on the integrity of the blood-brain barrier, and not the level of S100B in the brain. The time profile of S100B release following experimental TBI, both in vitro and in vivo, suggests a role of S100B in delayed reparative processes. Further, recent findings provide evidence, that S100B may decrease neuronal injury and/or contribute to repair following TBI. Hence, S100B, far from being a negative determinant of outcome, as suggested previously in the human TBI and ischemia literature, is of potential therapeutic value that could improve outcome in patients who sustain various forms of acute brain damage.

Download full-text


Available from: Andrea Kleindienst, Dec 25, 2013
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antiepileptic drugs (AED) which are used to treat seizures in pregnant women, infants, and young children may cause cognitive impairment or other uncertain injury. However, the precise mechanisms responsible for the negative effects of new AEDs like lamotrigine (LTG) and topiramate (TPM) in the developing brain are still unclear. To investigate the GFAP, NCAM and S100B levels in the whole brain of newborn rats on postnatal 1 day and in the hippocampus of adult rats to find out the effect of TPM and LTG on cognitive impairment and brain maturation. Twenty eight pregnant rats were randomly divided into 7 groups with 4 animals in each group. The first group, receiving no drugs, was assigned as the control group. The study groups received intraperitoneal TPM or LTG injections in each trimester. Western blot analysis of the GFAP, NCAM and S100B was performed in the offspring. Behavioral tests were performed at postnatal day 75. The rats in the TPM-I and TPM-III groups had a significant impairment in escape latency on the 5th day as compared to the control rats in a Morris water maze test. In addition, in the expression of astrocyte derived markers, GFAP was upregulated, whereas S100β and NCAM were downregulated in the whole brain on postnatal day 1, in offspring exposed to LTG and TPM in utero. The detrimental effects of TPM and LTG appear to be confined particularly to the early stages of brain development. And TPM seems to have a partial role in the cognitive impairment.
    09/2014; 23(5):691-8. DOI:10.17219/acem/37219
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Post-mortem histopathological studies report on reduced glial cell numbers in various frontolimbic areas of depressed patients implying that glial loss together with abnormal functioning could contribute to the pathophysiology of mood disorders. Astrocytes are regarded as the most abundant cell type in the brain and known for their housekeeping functions, but as recent developments suggest, they are also dynamic regulators of synaptogenesis, synaptic strength and stability and they control adult hippocampal neurogenesis. The primary aim of this review was to summarize the abundant experimental evidences demonstrating that antidepressant therapies have profound effect on astrocytes. Antidepressants modify astroglial physiology, morphology and by affecting gliogenesis they probably even regulate glial cell numbers. Antidepressants affect intracellular signaling pathways and gene expression of astrocytes, as well as the expression of receptors and the release of various trophic factors. We also assess the potential functional consequences of these changes on glutamate and glucose homeostasis and on synaptic communication between the neurons. We propose here a hypothesis that antidepressant treatment not only affects neurons, but also activates astrocytes, triggering them to carry out specific functions that result in the reactivation of cortical plasticity and can lead to the readjustment of abnormal neuronal networks. We argue here that these astrocyte specific changes are likely to contribute to the therapeutic effectiveness of the currently available antidepressant treatments and the better understanding of these cellular and molecular processes could help us to identify novel targets for the development of antidepressant drugs.
    European neuropsychopharmacology: the journal of the European College of Neuropsychopharmacology 05/2012; 23(3). DOI:10.1016/j.euroneuro.2012.04.017 · 5.40 Impact Factor
  • Source
    Recent Advances in Arthroplasty, 01/2012; , ISBN: 978-953-307-990-5