Article

Isoform specificity of PKC translocation in living Aplysia sensory neurons and a role for Ca2+-dependent PKC APL I in the induction of intermediate-term facilitation.

Department of Psychiatry and Biobehavioral Science, University of California at Los Angeles, Los Angeles, California 90095-1606, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 09/2006; 26(34):8847-56. DOI: 10.1523/JNEUROSCI.1919-06.2006
Source: PubMed

ABSTRACT Protein kinase Cs (PKCs) are important effectors of synaptic plasticity. In Aplysia, there are two major phorbol ester-activated PKCs, Ca2+-activated PKC Apl I and Ca2+-independent PKC Apl II. Functional Apl II, but not Apl I, in sensory neurons is required for a form of short-term facilitation induced at sensorimotor synapses by the facilitatory transmitter serotonin (5-HT). Because PKCs are activated by translocating from the cytoplasm to the membrane, we used fluorescently tagged PKCs to determine the isoform and cell-type specificity of translocation in living Aplysia neurons. In Sf9 cells, low levels of diacylglycerol translocate Apl II, but not Apl I, which requires calcium for translocation at low concentrations of diacylglycerol. Accordingly, application of 5-HT to Aplysia sensory neurons in the absence of neuronal firing translocates Apl II, but not Apl I, consistent with the role of Apl II in short-term facilitation. This translocation is observed in sensory neurons, but not in motor neurons. Apl I translocates only if 5-HT is coupled to firing in the sensory neuron; firing alone is ineffective. Because combined 5-HT and firing are required for the induction of one type of intermediate-term facilitation at these synapses, we asked whether this form of synaptic plasticity involves activation of Apl I. We report here that dominant-negative Apl I, but not Apl II, blocks intermediate-term facilitation. Thus, different isoforms of PKC translocate under different conditions to mediate distinct types of synaptic plasticity: Ca2+-independent Apl II is involved in short-term facilitation, and Ca2+-dependent Apl I contributes to intermediate-term facilitation.

0 Followers
 · 
44 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aplysia sensorimotor synapses provide a useful model system for analyzing molecular processes that contribute to heterosynaptic plasticity. For example, previous studies demonstrated that multiple kinase cascades contribute to serotonin (5-HT)-induced short-term synaptic facilitation (STF), including protein kinase A (PKA) and protein kinase C (PKC). Moreover, the contribution of each kinase is believed to depend on the state of the synapse (e.g., depressed or nondepressed) and the time after application of 5-HT. Here, a previously unappreciated role for PKC-dependent processes was revealed to underlie the maintenance of STF at relatively nondepressed synapses. This PKC dependence was revealed when the synapse was stimulated repeatedly after application of 5-HT. The contributions of the PKA and PKC pathways were examined by blocking adenylyl cyclase-coupled 5-HT receptors with methiothepin and by blocking PKC with chelerythrine. STF was assessed 20 s after 5-HT application. The effects of PKC were consistent with enhanced mobilization of transmitter, as assessed by application of hypertonic sucrose solutions to measure the readily-releasable-pool (RRP) of vesicles and recovery of the RRP after depletion. A computational model of transmitter release demonstrated that a PKC-dependent mobilization process was sufficient to explain the maintenance of STF at nondepressed synapses and the facilitation of depressed synapses.
    Journal of Neurophysiology 07/2014; 112(8). DOI:10.1152/jn.00577.2013 · 3.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein kinase Cs (PKCs) are activated by translocating from the cytoplasm to the membrane. We have previously shown that serotonin-mediated translocation of PKC to the plasma membrane in Aplysia sensory neurons was subject to desensitization, a decrease in the ability of serotonin to induce translocation after previous application of serotonin. In Aplysia, changes in the strength of the sensory–motor neuron synapse are important for behavioral sensitization and PKC regulates a number of important aspects of this form of synaptic plasticity. We have previously suggested that the desensitization of PKC translocation in Aplysia sensory neurons may partially explain the differences between spaced and massed training, as spaced applications of serotonin, a cellular analog of spaced training, cause greater desensitization of PKC translocation than one massed application of serotonin, a cellular analog of massed training. Our previous studies were performed in isolated sensory neurons. In the present study, we monitored translocation of fluorescently-tagged PKC to the plasma membrane in living sensory neurons that were co-cultured with motor neurons to allow for synapse formation. We show that desensitization now becomes similar during spaced and massed applications of serotonin. We had previously modeled the signaling pathways that govern desensitization in isolated sensory neurons. We now modify this mathematical model to account for the changes observed in desensitization dynamics following synapse formation. Our study shows that synapse formation leads to significant changes in the molecular signaling networks that underlie desensitization of PKC translocation.
    European Journal of Neuroscience 11/2014; 41(3). DOI:10.1111/ejn.12794 · 3.67 Impact Factor
  • Edited by Nguyen, Peter, 01/2013; Humana Press., ISBN: 9781627035163

Full-text

Download
10 Downloads
Available from
Aug 20, 2014