Studying the Signaling Role of 2-Oxoglutaric Acid Using Analogs that Mimic the Ketone and Ketal Forms of 2-Oxoglutaric Acid

College of Chemistry and Molecular Sciences, Wuhan University, 430072 Wuhan, China.
Chemistry & Biology (Impact Factor: 6.59). 09/2006; 13(8):849-56. DOI: 10.1016/j.chembiol.2006.06.009
Source: PubMed

ABSTRACT 2-Oxoglutaric acid (2-OG), a Krebs cycle intermediate, is a signaling molecule in many organisms. To determine which form of 2-OG, the ketone or the ketal form, is responsible for its signaling function, we have synthesized and characterized various 2-OG analogs. Only 2-methylenepentanedioic acid (2-MPA), which resembles closely the ketone form of 2-OG, is able to elicit cell responses in the cyanobacterium Anabaena by inducing nitrogen-fixing cells called heterocysts. None of the analogs mimicking the ketal form of 2-OG are able to induce heterocysts because none of them are able to interact with NtcA, a 2-OG sensor. NtcA interacts with 2-MPA and 2-OG in a similar manner, and it is necessary for heterocyst differentiation induced by 2-MPA. Therefore, it is primarily the ketone form that is responsible for the signaling role of 2-OG in Anabaena.

Download full-text


Available from: Cheng-Cai Zhang, Jun 27, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
    Cold Spring Harbor perspectives in biology 04/2010; 2(4):a000315. DOI:10.1101/cshperspect.a000315 · 8.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Heterocysts, cells specialized in N(2) fixation in cyanobacteria, appeared at near to 2.1 Ga. They constitute one of the oldest forms of differentiated cells in evolution, and are thus an interesting model for studies on evolutionary-developmental biology. How heterocysts arose during evolution remains unknown. In Anabaena PCC 7120, heterocyst development requires, among other genes, hetR for the initiation of heterocyst differentiation, and patS, encoding a diffusible inhibitor of heterocyst formation. In this study, we report that both hetR and patS are widespread among filamentous cyanobacteria that do not form heterocysts or fix N(2). hetR and patS are found in proximity on the chromosome in several cases, such as Arthrospira platensis, in which the level of HetR increased following nitrogen deprivation. The hetR gene of A. platensis could complement a hetR mutant of Anabaena PCC 7120, and patS of A. platensis could suppress heterocyst differentiation in Anabaena PCC 7120. Thus, key regulatory genes, including hetR and patS, involved in heterocyst development may have evolved before heterocysts appeared, suggesting that their function was not limited to heterocyst differentiation.
    Microbiology 05/2009; 155(Pt 5):1418-26. DOI:10.1099/mic.0.027540-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A Ca2+ signal is required for the process of heterocyst differentiation in the filamentous diazotrophic cyanobacterium Anabaena sp. PCC 7120. This paper presents evidence that a transient increase in intracellular free Ca2+ is also involved in acclimation to nitrogen starvation in the unicellular non-diazotrophic cyanobacterium Synechococcus elongatus PCC 7942. The Ca2+ transient was triggered in response to nitrogen step-down or the addition of 2-oxoglutarate (2-OG), or its analogues 2,2-difluoropentanedioic acid (DFPA) and 2-methylenepentanedioic acid (2-MPA), to cells growing with combined nitrogen, suggesting that an increase in intracellular 2-OG levels precedes the Ca2+ transient. The signalling protein P(II) and the transcriptional regulator NtcA appear to be needed to trigger the signal. Suppression of the Ca2+ transient by the intracellular Ca2+ chelator N,N'-[1,2-ethanediylbis(oxy-2,1-phenylene)]bis[N-[2-[(acetyloxy)methoxy]-2-oxoethyl]]-,bis[(acetyloxy)methyl] ester (BAPTA-AM) inhibited expression of the glnB and glnN genes, which are involved in acclimation to nitrogen starvation and transcriptionally activated by NtcA. BAPTA-AM treatment partially inhibited expression of the nblA gene, which is involved in phycobiliprotein degradation following nutrient starvation and is regulated by NtcA and NblR; in close agreement, BAPTA-AM treatment partially inhibited bleaching following nitrogen starvation. Taken together, the results presented here strongly suggest an involvement of a defined Ca2+ transient in acclimation of S. elongatus to nitrogen starvation through NtcA-dependent regulation.
    Microbiology 02/2009; 155(Pt 1):25-34. DOI:10.1099/mic.0.022251-0 · 2.84 Impact Factor