Article

Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy.

Department of Biochemistry, University of Illinois, Urbana, Illinois 61801, USA.
Nature Chemical Biology (Impact Factor: 13.22). 11/2006; 2(10):543-50. DOI: 10.1038/nchembio814
Source: PubMed

ABSTRACT Mutation and aberrant expression of apoptotic proteins are hallmarks of cancer. These changes prevent proapoptotic signals from being transmitted to executioner caspases, thereby averting apoptotic death and allowing cellular proliferation. Caspase-3 is the key executioner caspase, and it exists as an inactive zymogen that is activated by upstream signals. Notably, concentrations of procaspase-3 in certain cancerous cells are significantly higher than those in noncancerous controls. Here we report the identification of a small molecule (PAC-1) that directly activates procaspase-3 to caspase-3 in vitro and induces apoptosis in cancerous cells isolated from primary colon tumors in a manner directly proportional to the concentration of procaspase-3 inside these cells. We found that PAC-1 retarded the growth of tumors in three different mouse models of cancer, including two models in which PAC-1 was administered orally. PAC-1 is the first small molecule known to directly activate procaspase-3 to caspase-3, a transformation that allows induction of apoptosis even in cells that have defective apoptotic machinery. The direct activation of executioner caspases is an anticancer strategy that may prove beneficial in treating the many cancers in which procaspase-3 concentrations are elevated.

0 Bookmarks
 · 
98 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Five organotin(IV) compounds were synthesized from N'-[(1E)-(2-hydroxy-3-methoxyphenyl)methylidene]pyridine-4-carbohydrazone and the corresponding dialkyltin(IV) or trialkyltin(IV) precursor. Solid state structures were determined by IR, elemental analysis, NMR spectroscopy, and for 1, 2, 4 and 5 single crystal X-ray diffraction analysis. Compounds 1, 2 and 4 are monomers with the tin atoms five-coordinated in distorted trigonal bipyramid, of which the deprotonated Schiff base ligand chelate to tin center in the enolic tridentate mode. Differently, in compound 5, the enolization does not occur for the Schiff base ligand, and only the pyridinyl N atom and the deprotonated phenol hydroxyl oxygen atom participate in the coordination. Fascinatingly, six trimethyltin(IV) coordination units are linked by the Sn⋯N weak interaction atoms and form a 72-membered crown-like macrocycle. Preliminary in vitro cytotoxicity studies on five human tumor cells lines (HL-60, A549, HT-29, HCT-116 and Caco-2) by MTT assay reveal that di-n-butyltin(IV) complex 2 and diphenyltin(IV) complex 4 triggered significant antiproliferative effects in cultured tumor cells, and their cytotoxic activity correlates with intracellular organotin(IV) concentration. The interaction of the complexes with calf thymus DNA (CT-DNA) has been explored by absorption and emission titration methods, which revealed that complexes 2 and 4 interact with CT-DNA through groove-binding and partial intercalation of the extended planar ligand with the DNA base stack. Further, the albumin interactions of complexes 2 and 4 were investigated using fluorescence quenching spectra and synchronous fluorescence spectra. Studies reveal that di-n-butyltin(IV) complex 2 with higher cytotoxicity show stronger DNA/BSA interaction than diphenyltin(IV) complex 4.
    European Journal of Medicinal Chemistry 08/2014; 86C:550-561. · 3.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel series of first procaspase activating compound(PAC-1) analogues was designed, synthesized and evaluated for antitumor activity towards two cell lines[human promyelocytic leukemia cell line(HL60) and human embryonic lung fibroblast cell line(HLF)] by the MTT[3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazo-liumromide]_method in vitro. The structures of all the compounds were confirmed by 1H NMR, MS and elemental analysis. Among the compounds synthesized,(E)-2-[(3-{[4-(tert-butyl)benzyl](methyl)amino}propyl)(methyl)amino]-N′-[4-(diethylamino)-2-hydroxybenzylidene]acetohydrazide(compound 6n) exhibits a good anti-proliferative activity to the majority of tumor cells tested, and selectively cleaves cancer cells. Thus, compound 6n was identified as promising lead compound for further structural modification.
    Chemical Research in Chinese Universities 10/2013; 29(5):906-910. · 1.12 Impact Factor
  • Source
    Organic Preparations and Procedures International 09/2014; 465:469-474. · 1.19 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
May 26, 2014