Article

Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air.

Materials Science and Engineering Department, A. J. Drexel Nanotechnology Institute, Drexel University, Philadelphia, Pennsylvania 19104, USA.
Journal of the American Chemical Society (Impact Factor: 10.68). 10/2006; 128(35):11635-42. DOI: 10.1021/ja063303n
Source: PubMed

ABSTRACT The presence of large amounts of nondiamond carbon in detonation-synthesized nanodiamond (ND) severely limits applications of this exciting nanomaterial. We report on a simple and environmentally friendly route involving oxidation in air to selectively remove sp(2)-bonded carbon from ND. Thermogravimetric analysis and in situ Raman spectroscopy shows that sp(2) and sp(3) carbon species oxidize with different rates at 375-450 degrees C and reveals a narrow temperature range of 400-430 degrees C in which the oxidation of sp(2)-bonded carbon occurs with no or minimal loss of diamond. X-ray absorption near-edge structure spectroscopy detects an increase of up to 2 orders of magnitude in the sp(3)/sp(2) ratio after oxidation. The content of up to 96% of sp(3)-bonded carbon in the oxidized samples is comparable to that found in microcrystalline diamond and is unprecedented for ND powders. Transmission electron microscopy and Fourier transform infrared spectroscopy studies show high purity 5-nm ND particles covered by oxygen-containing surface functional groups. The surface functionalization can be controlled by subsequent treatments (e.g., hydrogenization). In contrast to current purification techniques, the air oxidation process does not require the use of toxic or aggressive chemicals, catalysts, or inhibitors and opens avenues for numerous new applications of nanodiamond.

0 Bookmarks
 · 
145 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this review, the emerging roles of group IV nanoparticles including silicon, diamond, silicon carbide, and germanium are summarized and discussed from the perspective of biologists, engineers, and medical practitioners. The synthesis, properties, and biological applications of these new nanomaterials have attracted great interest in the past few years. They have gradually evolved into promising biomaterials due to their innate biocompatibility; toxic ions are not released when they are used in vitro or in vivo, and their wide fluorescence spectral regions span the near-infrared, visible, and near-ultraviolet ranges. Additionally, they generally have good resistance against photobleaching and have lifetimes on the order of nanoseconds to microseconds, which are suitable for bioimaging. Some of the materials possess unique mechanical, chemical, or physical properties, such as ultrachemical and thermal stability, high hardness, high photostability, and no blinking. Recent data have revealed the superiority of these nanoparticles in biological imaging and drug delivery.
    Small 10/2010; 6(19):2080-98. · 7.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The impressively low friction and wear of diamond in humid environments is debated to originate from either the stability of the passivated diamond surface or sliding-induced graphitization/rehybridization of carbon. We find ultralow friction and wear for ultrananocrystalline diamond surfaces even in dry environments, and observe negligible rehybridization except for a modest, submonolayer amount under the most severe conditions (high load, low humidity). This supports the passivation hypothesis, and establishes a new regime of exceptionally low friction and wear for diamond.
    Physical Review Letters 06/2008; · 7.73 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescent nanodiamonds (FNDs) are very promising fluorophores for use in biosystems due to their high biocompatibility and photostability. To overcome their tendency to aggregate in physiological solutions, which severely limits the biological applications of FNDs, we developed a new non-covalent coating method using a block copolymer, PEG-b-P(DMAEMA-co-BMA), or proteins such as BSA and HSA. By simple mixing of the block copolymer with FNDs, the cationic DMAEMA and hydrophobic BMA moieties can strongly interact with the anionic and hydrophobic moieties on the FND surface, while the PEG block can form a shell to prevent the direct contact between FNDs. The polymer-coated FNDs, along with BSA- and HSA-coated FNDs, showed non-aggregation characteristics and maintained their size at the physiological salt concentration. The well-dispersed, polymer- or protein-coated FNDs in physiological solutions showed enhanced intracellular uptake, which was confirmed by CLSM. In addition, the biocompatibility of the coated FNDs was expressly supported by a cytotoxicity assay. Our simple non-covalent coating with the block copolymer, which can be easily modified by various chemical methods, projects a very promising outlook for future biomedical applications, especially in comparison with covalent coating or protein-based coating.
    Molecular BioSystems 01/2013; · 3.35 Impact Factor