Poxvirus Tumor Necrosis Factor Receptor (TNFR)-Like T2 Proteins Contain a Conserved Preligand Assembly Domain That Inhibits Cellular TNFR1-Induced Cell Death

Westmead Millennium Institute, Westmead, NSW 2145, Australia.
Journal of Virology (Impact Factor: 4.44). 10/2006; 80(18):9300-9. DOI: 10.1128/JVI.02449-05
Source: PubMed


The poxvirus tumor necrosis factor receptor (TNFR) homologue T2 has immunomodulatory properties; secreted myxoma virus T2 (M-T2) protein binds and inhibits rabbit TNF-alpha, while intracellular M-T2 blocks virus-induced lymphocyte apoptosis. Here, we define the antiapoptotic function as inhibition of TNFR-mediated death via a highly conserved viral preligand assembly domain (vPLAD). Jurkat cell lines constitutively expressing M-T2 were generated and shown to be resistant to UV irradiation-, etoposide-, and cycloheximide-induced death. These cells were also resistant to human TNF-alpha, but M-T2 expression did not alter surface expression levels of TNFRs. Previous studies indicated that T2's antiapoptotic function was conferred by the N-terminal region of the protein, and further examination of this region revealed a highly conserved N-terminal vPLAD, which is present in all poxvirus T2-like molecules. In cellular TNFRs and TNF-alpha-related apoptosis-inducing ligand (TRAIL) receptors (TRAILRs), PLAD controls receptor signaling competency prior to ligand binding. Here, we show that M-T2 potently inhibits TNFR1-induced death in a manner requiring the M-T2 vPLAD. Furthermore, we demonstrate that M-T2 physically associates with and colocalizes with human TNFRs but does not prevent human TNF-alpha binding to cellular receptors. Thus, M-T2 vPLAD is a species-nonspecific dominant-negative inhibitor of cellular TNFR1 function. Given that the PLAD is conserved in all known poxvirus T2-like molecules, we predict that it plays an important function in each of these proteins. Moreover, that the vPLAD confers an important antiapoptotic function confirms this domain as a potential target in the development of the next generation of TNF-alpha/TNFR therapeutics.


Available from: Lisa M Sedger
  • Source
    • "The MYXV protein M-T2 (M002R/L) is a secreted tumor necrosis factor receptor (TNFR) homolog that inhibits apoptosis by binding and subsequently inhibiting rabbit TNF via a conserved ligand-binding domain at the N-terminus of the viral protein [27-29]. A highly conserved viral preligand assembly domain (vPLAD) on the M-T2 protein is responsible for inhibiting intracellular apoptosis, making it the first described viral immunomodulatory protein for which two separate domains with distinct immune inhibiting functions are known [29,30]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myxoma virus (MYXV) gained importance throughout the twentieth century because of the use of the highly virulent Standard Laboratory Strain (SLS) by the Australian government in the attempt to control the feral Australian population of Oryctolagus cuniculus (European rabbit) and the subsequent illegal release of MYXV in Europe. In the European rabbit, MYXV causes a disease with an exceedingly high mortality rate, named myxomatosis, which is passively transmitted by biting arthropod vectors. MYXV still has a great impact on European rabbit populations around the world. In contrast, only a single cutaneous lesion, restricted to the point of inoculation, is seen in its natural long-term host, the South-American Sylvilagus brasiliensis and the North-American S. Bachmani. Apart from being detrimental for European rabbits, however, MYXV has also become of interest in human medicine in the last two decades for two reasons. Firstly, due to the strong immune suppressing effects of certain MYXV proteins, several secreted virus-encoded immunomodulators (e.g. Serp-1) are being developed to treat systemic inflammatory syndromes such as cardiovascular disease in humans. Secondly, due to the inherent ability of MYXV to infect a broad spectrum of human cancer cells, the live virus is also being developed as an oncolytic virotherapeutic to treat human cancer. In this review, an update will be given on the current status of MYXV in rabbits as well as its potential in human medicine in the twenty-first century.
    Veterinary Research 06/2011; 42(1):76. DOI:10.1186/1297-9716-42-76 · 2.82 Impact Factor
  • Source
    • "Further studies have found that M-T2 also harbors a PLAD (PreLigand Assembly Domain) like-domain present in cellular TNF-Rs (Sedger et al., 2006). The PLAD domain of M-T2 can inhibit human TNF-R-mediated cell death by interaction with the PLAD domains of both human TNF-R1 and TNF-R2 (Sedger et al., 2006). Crm-like TNF inhibitors namely CrmB, CrmC, CrmD and CrmE also possess multiple ligand binding properties. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Tanapox virus (TPV) encodes and expresses a secreted TNF-binding protein, TPV-2L or gp38, that displays inhibitory properties against TNF from diverse mammalian species, including human, monkey, canine and rabbit. TPV-2L also has sequence similarity with the MHC-class I heavy chain and interacts differently with human TNF as compared to the known cellular TNF receptors or any of the known virus-encoded TNF receptor homologs derived from many poxviruses. In order to determine the TNF binding region in TPV-2L, various TPV-2L C-terminal truncations and internal deletions were created and the muteins were expressed using recombinant baculovirus vectors. C-terminal deletions from TPV-2L resulted in reduced binding affinity for human TNF and specific mutants of TNF that discriminate between TNF-R1 and TNF-R2. However, deletion of C-terminal 42 amino acid residues totally abolished the binding of human TNF and its mutants. Removal of any of the predicted internal domains resulted in a mutant TPV-2L protein incapable of binding to human TNF. Deletion of C-terminal residues also affected the ability of TPV-2L to block TNF-induced cellular cytotoxicity. In addition to TNF, TPV-2L can also form complexes with human β2-microglobulin to form a novel macromolecular complex. In summary, the TPV-2L protein is a bona fide MHC-1 heavy chain family member that binds and inhibits human TNF in a fashion very distinct from other known poxvirus-encoded TNF inhibitors, and also can form a novel complex with the human MHC-1 light chain, β2-microglobulin.
    Virology 04/2009; 386(2-386):462-468. DOI:10.1016/j.virol.2009.01.026 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biological activities of the components which were extracted from the scallop shells were investigated for the effective utilization of the scallop shells. Activation was observed for α-chymotrypsin activity, while the scallop shell extract showed strong inhibitory activities for elastase and trypsin. The scallop shell extract inhibited generation of Superoxide anion generated by xanthine and xanthine oxidase. When the scallop shell extract was supplied to culture medium for skin fibroblast cells, the cell growth rate was increased. These results suggest that scallop shells contain some bioactive substances.
    Developments in Food Science 01/2004; 42. DOI:10.1016/S0167-4501(04)80025-6
Show more