Article

Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task.

Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, California 90024, USA.
Human Brain Mapping (Impact Factor: 6.92). 05/2007; 28(5):383-93. DOI: 10.1002/hbm.20281
Source: PubMed

ABSTRACT Relative to individuals who do not have addictive disorders, drug abusers exhibit greater devaluation of rewards as a function of their delay ("delay discounting"). The present study sought to extend this finding to methamphetamine (MA) abusers and to help understand its neural basis. MA abusers (n = 12) and control subjects who did not use illicit drugs (n = 17) participated in tests of delay discounting with hypothetical money rewards. We then used a derived estimate of each individual's delay discounting to generate a functional magnetic resonance imaging probe task consisting of three conditions: "hard choices," requiring selections between "smaller, sooner" and "larger, later" alternatives that were similarly valued given the individual's delay discounting; "easy choices," in which alternatives differed dramatically in value; and a "no choice" control condition. MA abusers exhibited more delay discounting than control subjects (P < 0.05). Across groups, the "hard choice > no choice" contrast revealed significant effects in the ventrolateral prefrontal cortex, dorsolateral prefrontal cortex (DLPFC), dorsal anterior cingulate cortex, and areas surrounding the intraparietal sulcus (IPS). With group comparisons limited to these clusters, the "hard choice > easy choice" contrast indicated significant group differences in task-related activity within the left DLPFC and right IPS; qualitatively similar nonsignificant effects were present in the other clusters tested. Whereas control subjects showed less recruitment associated with easy than with hard choices, MA abusers generally did not. Correlational analysis did not indicate a relationship between this anomaly in frontoparietal recruitment and greater degree of delay discounting exhibited by MA abusers. Therefore, while apparent inefficiency of cortical processing related to decision-making in MA abusers may contribute to the neural basis of enhanced delay discounting by this population, other factors remain to be identified.

0 Bookmarks
 · 
74 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Similarities and differences between obesity and addiction are a prominent topic of ongoing research. We conducted an activation likelihood estimation meta-analysis on 87 studies in order to map the functional magnetic resonance imaging (fMRI) response to reward in participants with obesity, substance addiction and non-substance (or behavioural) addiction, and to identify commonalities and differences between them. Our study confirms the existence of alterations during reward processing in obesity, non-substance addiction and substance addiction. Specifically, participants with obesity or with addictions differed from controls in several brain regions including prefrontal areas, subcortical structures and sensory areas. Additionally, participants with obesity and substance addictions exhibited similar blood-oxygen-level-dependent fMRI hyperactivity in the amygdala and striatum when processing either general rewarding stimuli or the problematic stimuli (food and drug-related stimuli, respectively). We propose that these similarities may be associated with an enhanced focus on reward – especially with regard to food or drug-related stimuli – in obesity and substance addiction. Ultimately, this enhancement of reward processes may facilitate the presence of compulsive-like behaviour in some individuals or under some specific circumstances. We hope that increasing knowledge about the neurobehavioural correlates of obesity and addictions will lead to practical strategies that target the high prevalence of these central public health challenges.
    Obesity Reviews 10/2014; · 7.86 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive control of physical activity and sedentary behavior is receiving increased attention in the neuroscientific and behavioral medicine literature as a means of better understanding and improving the self-regulation of physical activity. Enhancing individuals’ cognitive control capacities may provide a resilient means to increase physical activity and reduce sedentary behavior. First, this paper reviews emerging evidence of the antecedence of cognitive control abilities in successful self-regulation of physical activity, and in precipitating self-regulation failure that predisposes to sedentary behavior. We then highlight the brain networks that may underpin the cognitive control and self-regulation of physical activity, including the default mode network, prefrontal cortical networks and brain regions and pathways associated with reward. We then discuss research on cognitive training interventions that document improved cognitive control and that suggest promise of influencing physical activity regulation. Key cognitive training components likely to be the most effective at improving self-regulation are also highlighted. The review concludes with suggestions for future research.
    Frontiers in Human Neuroscience 09/2014; · 2.90 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite initial reports of a decline in use in the early 2000s, methamphetamine remains a significant public health concern with known neurotoxic and neurocognitive effects to the user. The goal of this review is to update the literature on methamphetamine use and addiction since its assent to peak popularity in 1990s.
    Drug and Alcohol Dependence 08/2014; · 3.28 Impact Factor