Age-related changes in carotid artery flow and pressure pulses - Possible implications for cerebral microvascular disease

Jichi Medical University, Totigi, Tochigi, Japan
Stroke (Impact Factor: 6.02). 10/2006; 37(10):2552-6. DOI: 10.1161/01.STR.0000242289.20381.f4
Source: PubMed

ABSTRACT We sought to establish the relation between the pulsatile components of pressure and flow waveforms in the carotid artery and their change with age.
Distention (pressure) and axial flow velocity waveforms were recorded noninvasively and simultaneously from the common carotid artery of 56 healthy subjects aged 20 to 72 years.
There was a close relation between the time intervals of pressure and flow waves: from foot to first shoulder or peak, to second shoulder or peak, and to incisura (r=0.97, P<0.0001 for each), which approximated the line of identity. The peak and nadir of flow velocity decreased with age, but late systolic flow augmentation increased substantially (1.6 times in the older group); this can be attributed to earlier wave reflection from the lower body. Pressure augmentation index (PAI) and flow augmentation index (FAI) increased similarly with age (PAI (%) = 0.84 x age - 26.6; FAI (%) = 0.75 x age + 11.9; both P<0.0001).
Arterial stiffening with aging increases carotid flow augmentation and can explain the increasing flow fluctuations in cerebral blood vessels. Measurement of carotid FAI may provide a gauge for risk of cerebral microvascular damage, just as PAI provides a gauge for risk of left ventricular hypertrophy and failure.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genetic and surgical mouse models are commonly used to study cerebrovascular disease, but their size makes invasive hemodynamic testing technically challenging. The purpose of this study was to demonstrate a noninvasive measurement of cerebrovascular impedance and wave reflection in mice using high-frequency ultrasound in the left common carotid artery (LCCA), and to examine whether microvascular changes associated with hypercapnia could be detected with such an approach. Ten mice (C57BL/6J) were studied using a high-frequency ultrasound system (40 MHz). Lumen area and blood flow waveforms were obtained from the LCCA and used to calculate pulse-wave velocity, input impedance, and reflection amplitude and transit time under both normocapnic and hypercapnic (5% CO2) ventilation. With hypercapnia, vascular resistance was observed to decrease by 87%±12%. Although the modulus of input impedance was unchanged with hypercapnia, a phase decrease indicative of increased total arterial compliance was observed at low harmonics together with an increased reflection coefficient in both the time (0.57±0.08 versus 0.68±0.08, P=0.04) and frequency domains (0.62±0.08 versus 0.73±0.06, P=0.02). Interestingly, the majority of LCCA blood flow was found to pass into the internal carotid artery (range=76% to 90%, N=3), suggesting that hemodynamic measurements in this vessel are a good metric for intracerebral reactivity in mouse.Journal of Cerebral Blood Flow & Metabolism advance online publication, 17 December 2014; doi:10.1038/jcbfm.2014.229.
    Journal of Cerebral Blood Flow & Metabolism 12/2014; 35(3). DOI:10.1038/jcbfm.2014.229 · 5.34 Impact Factor
  • Journal of the American College of Cardiology 12/2014; 64(24):2630-2. DOI:10.1016/j.jacc.2014.10.010 · 15.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Traditional implantation techniques of assist devices from the apex of left ventricle to the ascending or descending aorta are highly invasive and carry substantial complications for end-stage heart failure patients. This study has shown that the descending aorta can be a promising location to install an implantable mechanical circulatory support with minimally invasive surgery. Herein, the hemodynamic effect of an in-house prototyped pump implanted in the descending aorta was investigated numerically as well as experimentally. The objective of the experimental study is met by using the in-house simulator of the cardiovascular loop replicating congestive heart failure conditions. The objective of the numerical study was met by using the modified version of the concentrated lumped parameter model developed by the same team. The results show that the pump placement in the descending aorta can lead to an improvement in pulsatility. The pressure drop, generated at the upstream of the pump, facilitates the cardiac output as a result of after-load reduction, but at the same time, it induces a slight drop in the carotid as well as the coronary perfusion. The pressure rise, generated at the downstream of the pump, improves the blood perfusion in the renal circulation. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
    Artificial Organs 04/2015; DOI:10.1111/aor.12431 · 1.87 Impact Factor