Article

Social defeat and footshock increase body mass and adiposity in male Syrian hamsters.

Department of Psychology, Georgia State University, Atlanta, Atlanta, GA 30302-3966, USA.
AJP Regulatory Integrative and Comparative Physiology (Impact Factor: 3.28). 02/2007; 292(1):R283-90. DOI: 10.1152/ajpregu.00330.2006
Source: PubMed

ABSTRACT Obesity is a world-wide epidemic, and many factors, including stress, have been linked to this growing trend. After social stress (i.e., defeat), subordinate laboratory rats and most laboratory mice become hypophagic and, subsequently, lose body mass; the opposite is true of subordinate Syrian hamsters. After social defeat, Syrian hamsters become hyperphagic and gain body mass compared with nonstressed controls. It is unknown whether this increase in body mass and food intake is limited to subordinate hamsters. In experiment 1, we asked, do dominant hamsters increase food intake, body mass, and adiposity after an agonistic encounter? Subordinate hamsters increased food intake and body mass compared with nonstressed controls. Although there was no difference in food intake or absolute body mass between dominant and nonstressed control animals, cumulative body mass gain was significantly higher in dominant than in nonstressed control animals. Total carcass lipid and white adipose tissue (WAT) (i.e., retroperitoneal and epididymal WAT) masses were significantly increased in subordinate, but not dominant, hamsters compared with nonstressed controls. In experiment 2, we asked, does footshock stress increase food intake, body mass, and adiposity. Hamsters exposed to defeat, but not footshock stress, increased food intake relative to nonstressed controls. In animals exposed to defeat or footshock stress, body mass, as well as mesenteric WAT mass, increased compared with nonstressed controls. Collectively, these data demonstrate that social and nonsocial stressors increase body and lipid mass in male hamsters, suggesting that this species may prove useful for studying the physiology of stress-induced obesity in some humans.

0 Bookmarks
 · 
68 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The present review covers two independent approaches, a neuroanatomical and a pharmacological (focused on serotonergic transmission), which converge in highlighting the critical role of the hypothalamus and midbrain periaqueductal gray matter in the generation of panic attacks and in the mechanism of action of current antipanic medication. Accordingly, innate and learned fear responses to different threats (i.e., predator, aggressive members of the same species, interoceptive threats and painful stimuli) are processed by independent circuits involving corticolimbic regions (the amygdala, the hippocampus and the prefrontal and insular cortices) and downstream hypothalamic and brainstem circuits. As for the drug treatment, animal models of panic indicate that the drugs currently used for treating panic disorder should work by enhancing 5-HT inhibition of neural systems that command proximal defense in both the dorsal periaqueductal gray and in the medial hypothalamus. For the anticipatory anxiety, the reviewed evidence points to corticolimbic structures, such as the amygdala, the septo-hippocampus and the prefrontal cortex, as its main neural substrate, modulated by stimulation of 5-HT2C and 5-HT1A receptors.
    Neuroscience & Biobehavioral Reviews 01/2014; · 10.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The underlying cause of predisposition to obesity is complex but one marker is cortisol responsiveness. Selection of sheep for high (HR) or low (LR) cortisol responses to adrenocorticotropin shows that HR are more likely to become obese. Increased propensity to obesity is associated with reduced skeletal muscle thermogenesis. We sought to determine whether metabolic or behavioral responses to stress also contribute to altered propensity to obesity in LR and HR. Animals (n = 5–10/group) were exposed to 3 stressors and we measured food intake and thermogenesis (recorded with dataloggers implanted into muscle). Stressors were hypoglycaemia (0.125 units/kg insulin, IV), a barking dog and immune challenge (200 ng/kg lipopolysaccharide – LPS, IV). LR animals showed a greater catabolic state in response to both immune and psychosocial stressors. LPS reduced (P < 0.01) food intake in both groups but LR showed a greater (P < 0.05) reduction in food intake and a more substantial (P < 0.05) rise in muscle temperature. Introduction of the barking dog reduced (P < 0.05) food intake in LR only. These metabolic differences coincided with differences in cortisol responsiveness, where HR animals had increased (P < 0.05) cortisol in response to both immune and psychosocial stressors. We also assessed behavior in the following paradigms: 1, isolation in the open field test; 2, response to a human intruder; and 3, food competition. LR had greater (P < 0.05) activity, reduced fearfulness and displayed a proactive coping style of behavior. Thus we demonstrate that high cortisol responsiveness identifies animals with stress-induced metabolic and behavioral traits that may contribute to susceptibility to obesity.
    Psychoneuroendocrinology 01/2014; 47:166–177. · 5.59 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anorexia and anxiety cause significant mortality and disability with female biases and frequent comorbidity after puberty, but the scarcity of suitable animal models impedes understanding of their biological underpinnings. It is reported here that in adult or weanling Syrian hamsters, relative to social housing (SH), social separation (SS) induced anorexia characterized as hypophagia, weight loss, reduced adiposity, and hypermetabolism. Following anorexia, SS increased reluctance to feed, and thigmotaxis, in anxiogenic environments. Importantly, anorexia and anxiety were induced post-puberty with female biases. SS also reduced hypothalamic corticotrophin-releasing factor mRNA and serum corticosteroid levels assessed by RT-PCR and RIA, respectively. Consistent with the view that sex differences in adrenal suppression contributed to female biases in anorexia and anxiety by disinhibiting neuroimmune activity, SS elevated hypothalamic interleukin-6 and toll-like receptor 4 mRNA levels. Although corticosteroids were highest during SH, they were within the physiological range and associated with juvenile-like growth of white adipose, bone, and skeletal muscle. These results suggest that hamsters exhibit plasticity in bioenergetic and emotional phenotypes across puberty without an increase in stress responsiveness. Thus, social separation of hamsters provides a model of sex differences in anorexia and anxiety during adulthood and their pathogeneses during adolescence.
    Physiology & Behavior 05/2014; · 3.16 Impact Factor

Similar Publications