Reed, S. E., Staley, E. M., Mayginnes, J. P., Pintel, D. J. & Tullis, G. E. Transfection of mammalian cells using linear polyethylenimine is a simple and effective means of producing recombinant adeno-associated virus vectors. J. Virol. Methods 138, 85-98

Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65211, United States.
Journal of Virological Methods (Impact Factor: 1.78). 01/2007; 138(1-2):85-98. DOI: 10.1016/j.jviromet.2006.07.024
Source: PubMed


We have developed a simple protocol to transfect mammalian cells using linear polyethylenimine (PEI). Our linear PEI protocol is as effective as commercial reagents in the transfection of HeLa cells and XDC293 cells, a derivative of HEK293 cells, but at a fraction of the cost. Greater than 90% of XDC293 cells and 98% of HeLa cells transfected using our method were positive for EGFP expression as determined by flow cytometery. Our protocol should be useful for many different applications such as large-scale production of recombinant protein and viruses, which requires transient transfection of mammalian cells in large batches. We have used this protocol to produce recombinant adeno-associated virus (AAV) in XDC293 cells and in HeLa cells. This requires transient expression of three adenovirus gene-products (E2A, E4orf6, and VA RNAs) as well as the AAV replication (Rep78, Rep68, Rep52, and Rep40) and capsid (VP1, VP2, and VP3) proteins. Production of a recombinant AAV that expresses green fluorescent protein was assessed by quantitative PCR and by transduction of HeLa cells. Linear PEI is a better transfection reagent than calcium phosphate for the production of recombinant AAV in both HEK293 and HeLa cells. In addition, when both HeLa and XDC293 cells were by our method, HeLa cells in the absence of E1A generated three-fold more recombinant AAV than XDC293 cells, which constitutively express E1A.

Download full-text


Available from: Gregory Tullis,
  • Source
    • "THP-1 macrophages were differentiated with 200 nM PMA for 24 h. Transfection was performed using Lipofectamine 2000 (Life Technologies, Grand Island, NY, USA) according to manufacturer's protocol or PEI MAX (Polysciences, Warrington, PA, USA) as described previously [21] "
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence indicates that caspase recruitment domain (CARD)-mediated caspase-1 (CASP1) assembly is an essential process for its activation and subsequent interleukin (IL)-1β release, leading to the initiation of inflammation. Both CARD16 and CARD17 were previously reported as inhibitory homologs of CASP1; however, their molecular function remains unclear. Here, we identified that oligomerization activity allows CARD16 to function as a CASP1 activator. We investigated the molecular characteristics of CARD16 and CARD17 in transiently transfected HeLa cells. Although both CARD16 and CARD17 interacted with CASP1CARD, only CARD16 formed a homo-oligomer. Oligomerized CARD16 formed a filament-like structure with CASP1CARD and a speck with apoptosis-associated speck-like protein containing a CARD. A filament-like structure formed by CARD16 promoted CASP1 filament assembly and IL-1β release. In contrast, CARD17 did not form a homo-oligomer or filaments and inhibited CASP1-dependent IL-1β release. Mutated CARD16D27G, mimicking the CARD17 amino acid sequence, formed a homo-oligomer but failed to form a filament-like structure. Consequently, CARD16D27G weakly promoted CASP1 filament assembly and subsequent IL-1β release. These results suggest that oligomerized CARD16 promotes CARD-mediated molecular assembly and CASP1 activation.
    FEBS Open Bio 04/2015; 5. DOI:10.1016/j.fob.2015.04.011 · 1.52 Impact Factor
  • Source
    • "The Daudi cells were harvested by centrifugation and washed once. Transfections of HeLa cells with either OAS1 cDNAs or OAS2 p69 cDNA under the control of the CMV promotor and control plasmids were performed with either TurboFect Transfection Reagent (Fermentas) following the manufactures protocol or using the polyethylenimine (PEI) method [40] for the immunofluoresence cytochemistry studies. In brief, linear PEI (25,000 Da) was used and complexes of DNA:PEI at ratios 1:8 (w/w) were allowed to form and added to the cells. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The expression of 2′-5′-Oligoadenylate synthetases (OASs) is induced by type 1 Interferons (IFNs) in response to viral infection. The OAS proteins have a unique ability to produce 2′-5′ Oligoadenylates, which bind and activate the ribonuclease RNase L. The RNase L degrades cellular RNAs which in turn inhibits protein translation and induces apoptosis. Several single nucleotide polymorphisms (SNPs) in the OAS1 gene have been associated with disease. We have investigated the functional effect of two common SNPs in the OAS1 gene. The SNP rs10774671 affects splicing to one of the exons in the OAS1 gene giving rise to differential expression of the OAS1 isoforms, and the SNP rs1131454 (former rs3741981) resides in exon 3 giving rise to OAS1 isoforms with either a Glycine or a Serine at position 162 in the core OAS unit. Results We have used three human cell lines with different genotypes in the OAS1 SNP rs10774671, HeLa cells with the AA genotype, HT1080 cells with AG, and Daudi cells with GG. The main OAS1 isoform expressed in Daudi and HT1080 cells was p46, and the main OAS1 isoform expressed in HeLa cells was p42. In addition, low levels of the OAS1 p52 mRNA was detected in HeLa cells and p48 mRNA in Daudi cells, and trace amounts of p44a mRNA were detected in the three cell lines treated with type 1 interferon. We show that the OAS1 p46 isoform was localized in the mitochondria in Daudi cells, whereas the OAS1 isoforms in HeLa cells were primarily localized in cytoplasmic vacuoles/lysosomes. By using recombinantly expressed OAS1 mutant proteins, we found that the OAS1 SNP rs1131454 (former rs3741981) did not affect the enzymatic OAS1 activity. Conclusions The SNP rs10774671 determines differential expression of the OAS1 isoforms. In Daudi and HT1080 cells the p46 isoform is the most abundantly expressed isoform associated with the G allele, whereas in HeLa cells the most abundantly expressed isoform is p42 associated with the A allele. The SNP rs1131454 (former rs3741981) does not interfere with OAS1 enzyme activity. The OAS1 p46 isoform localizes to the mitochondria, therefore a full 2-5A system can now be found in the mitochondria.
    BMC Cell Biology 09/2014; 15(1):33. DOI:10.1186/1471-2121-15-33 · 2.34 Impact Factor
  • Source
    • "The helper plasmids used (pDP1, pDP2) [54] generated combined serotype of 1 and 2, which efficiently transduces neurons, and can be purified on a heparin column [55]. Briefly, HEK293T/17 cells (ATCC) were plated in T225 flasks and transfected by linear polyethylenimine (PEI) [56], [57] with equal molar amount of either responder GADD34 cont, GADD34 CA or activator, and pDP1 and pDP2. The cells were collected 72 hours after transfection by scraping. "
    [Show abstract] [Hide abstract]
    ABSTRACT: β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) initiates the production of β-amyloid (Aβ), the major constituent of amyloid plaques in Alzheimer's disease (AD). BACE1 is elevated ∼2-3 fold in AD brain and is concentrated in dystrophic neurites near plaques, suggesting BACE1 elevation is Aβ-dependent. Previously, we showed that phosphorylation of the translation initiation factor eIF2α de-represses translation of BACE1 mRNA following stress such as energy deprivation. We hypothesized that stress induced by Aβ might increase BACE1 levels by the same translational mechanism involving eIF2α phosphorylation. To test this hypothesis, we used three different genetic strategies to determine the effects of reducing eIF2α phosphorylation on Aβ-dependent BACE1 elevation in vitro and in vivo: 1) a two-vector adeno-associated virus (AAV) system to express constitutively active GADD34, the regulatory subunit of PP1c eIF2α phosphatase; 2) a non-phosphorylatable eIF2α S51A knockin mutation; 3) a BACE1-YFP transgene lacking the BACE1 mRNA 5' untranslated region (UTR) required for eIF2α translational regulation. The first two strategies were used in primary neurons and 5XFAD transgenic mice, while the third strategy was employed only in 5XFAD mice. Despite very effective reduction of eIF2α phosphorylation in both primary neurons and 5XFAD brains, or elimination of eIF2α-mediated regulation of BACE1-YFP mRNA translation in 5XFAD brains, Aβ-dependent BACE1 elevation was not decreased. Additionally, robust inhibition of eIF2α phosphorylation did not block Aβ-dependent APP elevation in primary neurons, nor did it reduce amyloid pathology in 5XFAD mice. We conclude that amyloid-associated BACE1 elevation is not caused by translational de-repression via eIF2α phosphorylation, but instead appears to involve a post-translational mechanism. These definitive genetic results exclude a role for eIF2α phosphorylation in Aβ-dependent BACE1 and APP elevation. We suggest a vicious pathogenic cycle wherein Aβ42 toxicity induces peri-plaque BACE1 and APP accumulation in dystrophic neurites leading to exacerbated Aβ production and plaque progression.
    PLoS ONE 07/2014; 9(7):e101643. DOI:10.1371/journal.pone.0101643 · 3.23 Impact Factor
Show more