Article

CD26 inhibition enhances allogeneic donor-cell homing and engraftment after in utero hematopoietic-cell transplantation

The Center for Fetal Research, Children's Hospital of Philadelphia, Abramson Research Bldg, Rm 1116B, 3615 Civic Center Blvd, Philadelphia, PA 19104-4318, USA.
Blood (Impact Factor: 10.43). 01/2007; 108(13):4268-74. DOI: 10.1182/blood-2006-04-018986
Source: PubMed

ABSTRACT In utero hematopoietic-cell transplantation (IUHCT) can induce donor-specific tolerance to facilitate postnatal transplantation. Induction of tolerance requires a threshold level of mixed hematopoietic chimerism. CD26 is a peptidase whose inhibition increases homing and engraftment of hematopoietic cells in postnatal transplantation. We hypothesized that CD26 inhibition would increase donor-cell homing to the fetal liver (FL) and improve allogeneic engraftment following IUHCT. To evaluate this hypothesis, B6GFP bone marrow (BM) or enriched hematopoietic stem cells (HSCs) were transplanted into allogeneic fetal mice with or without CD26 inhibition. Recipients were analyzed for FL homing and peripheral-blood chimerism from 4 to 28 weeks of life. We found that CD26 inhibition of donor cells results in (1) increased homing of allogeneic BM and HSCs to the FL, (2) an increased number of injected animals with evidence of postnatal engraftment, (3) increased donor chimerism levels following IUHCT, and (4) a competitive engraftment advantage over noninhibited congenic donor cells. This study supports CD26 inhibition as a potential method to increase the level of FL homing and engraftment following IUHCT. The resulting increased donor chimerism suggests that CD26 inhibition may in the future be used as a method of increasing donor-specific tolerance following IUHCT.

Download full-text

Full-text

Available from: Philip Zoltick, May 15, 2014
0 Followers
 · 
89 Views
  • Source
    • "Accordingly, based on observations that the SDF-1 interaction with CXCR4 + HSPCs is attenuated by the dipeptidyl-peptidase CD26, inhibition of CD26 on HSPCs could enhance the chemotactic responsiveness to an SDF-1 gradient [7]. Another interesting strategy is modification of adhesion molecules on HSPCs by ex vivo treatment with fucosyltransferase that increases level of fucosylation of these receptors [106]. As it has been demonstrated human HSPCs after blockage of CD26 or after fucosylation of adhesion molecules home and subsequently engraft better on immunodeficient mice [104]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The α-chemokine stromal derived factor 1 (SDF-1), which binds to the CXCR4 and CXCR7 receptors, directs migration and homing of CXCR4+ hematopoietic stem/progenitor cells (HSPCs) to bone marrow (BM) and plays a crucial role in retention of these cells in stem cell niches. However, this unique role of SDF-1 has been recently challenged by several observations supporting SDF-1-CXCR4-independent BM homing. Specifically, it has been demonstrated that HSPCs respond robustly to some bioactive lipids, such as sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), and migrate in response to gradients of certain extracellular nucleotides, including uridine triphosphate (UTP) and adenosine triphosphate (ATP). Moreover, the responsiveness of HSPCs to an SDF-1 gradient is enhanced by some elements of innate immunity (e.g., C3 complement cascade cleavage fragments and antimicrobial cationic peptides, such as cathelicidin/LL-37 or β2-defensin) as well as prostaglandin E2 (PGE2). Since all these factors are upregulated in BM after myeloblative conditioning for transplantation, a more complex picture of homing emerges that involves several factors supporting, and in some situations even replacing, the SDF-1-CXCR4 axis.
    The Scientific World Journal 06/2012; 2012:758512. DOI:10.1100/2012/758512 · 1.73 Impact Factor
  • Source
    • "The second independent group showed that CD26 inhibition significantly increased homing and engraftment in the context of non-ablative, allogeneic in utero hematopoietic-cell transplantation (IUHCT). Specifically, they were able to show that short-term homing (4 hours or 48 hours) of transplanted whole BM and purified HSCs pre-treated with Diprotin A was enhanced, a higher percentage of mice with detectable engraftment was found, the level of stable engraftment was increased up to 6 months post-transplant, and the Diprotin A treated cells could dramatically outcompete non-treated congenic donor cells in competitive IUHCT experiments (Peranteau et al. 2006). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Hematopoietic cell transplantation (HCT) is an important modality used to treat patients with hematologic diseases and malignancies. A better understanding of the biological processes controlling hematopoietic cell functions such as migration/homing, proliferation and self-renewal is required for improving HCT therapies. This study focused on the role of two biologically relevant proteins, dipeptidylpeptidase IV (DPPIV/CD26) and Ras homologue enriched in brain 2 (Rheb2), in modulating hematopoietic cell engraftment. The first goal of this study was to determine the role of the protein DPPIV/CD26 in modulating the engraftment of human umbilical cord blood (hUCB) CD34+ stem/progenitor cells using a NOD/SCID mouse xenograft model, and based upon previous work demonstrating a role for this enzyme in Stromal-Derived Factor-1/CXCL12 mediated migration and homing. Related to this first goal, pretreatment with an inhibitor of DPPIV/CD26 peptidase activity increased engraftment of hUCB CD34+ cells in vivo in recipient Non Obese Diabetic/Severe Combined Immunodeficiency (NOD/SCID) mice while not disturbing their differentiation potential following transplantation. These results support using DPPIV/CD26 inhibition as a strategy for enhancing the efficacy of cord blood transplantation. The second goal was to determine, by overexpression, the role of the Rheb2 in affecting the balance between proliferation and in vivo repopulating activity of mouse hematopoietic cells. Rheb2 is known to activate the mammalian target of rapamycin (mTOR) pathway, a pathway important in hematopoiesis. Rheb2 overexpression increased the proliferation and mTOR signaling of two hematopoietic cell lines, 32D and BaF3, in response to delayed IL-3 addition. In primary mouse hematopoietic cells, Rheb2 overexpression enhanced the proliferation and expansion of hematopoietic progenitor cells (HPCs) and phenotypic hematopoietic stem cells (HSCs) in vitro. In addition, HPC survival was enhanced by Rheb2 overexpression. Using in vivo competitive repopulation assays, Rheb2 overexpression transiently expanded immature HPC/HSC populations shortly after transplantation, but reduced the engraftment of total transduced cells. These findings support previous work showing that signaling proteins able to enhance the proliferative status of hematopoietic stem cells often cause exhaustion of self-renewal and repopulating ability. These studies of hematopoietic engraftment modulated by both of these molecules provide information which may be important to future work on HCT.
  • Source
Show more