Article

Family-based association study of TPH1 and TPH2 polymorphisms in autism.

Laboratory of Molecular Neuropsychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA.
American Journal of Medical Genetics Part B Neuropsychiatric Genetics (Impact Factor: 3.23). 01/2007; 141B(8):861-7. DOI: 10.1002/ajmg.b.30356
Source: PubMed

ABSTRACT The TPH1 and TPH2 genes encode the rate-limiting enzymes that control serotonin biosynthesis, and serotonin is clearly altered in autism. In the current study, eight SNPs in the TPH1 gene region and eight SNPs within the TPH2 gene were examined by family-based association tests in a large cohort of 352 families with autism and in clinically defined subsets of these families with either severe obsessive-compulsive behaviors (sOCB) or self-stimulatory behaviors (SSB). We found no evidence for association between autism and single SNPs or haplotypes of the TPH1 and TPH2 genes in the cohort of all families or in the sOCB and SSB subsets. In particular, we failed to replicate the association between autism and variants of the TPH2 gene, rs4341581 (TRANSMIT P = 1; PDT P = 0.323; FBAT P = 0.446) and rs11179000 (TRANSMIT P = 0.174; PDT P = 0.293; FBAT P = 0.374). Furthermore, no evidence for linkage was observed between autism and SNPs in the TPH1 and TPH2 genes (although linkage at the TPH2 locus was observed in the SSB subset). Thus, it appears unlikely that the TPH1 and TPH2 genes play a significant role in the susceptibility to autism or to autism endophenotypes including sOCB and SSB.

0 Bookmarks
 · 
95 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism spectrum disorders (ASDs) are a phenotypically and etiologically heterogeneous set of disorders that include obsessive-compulsive behaviors (OCB) that partially overlap with symptoms associated with obsessive-compulsive disorder (OCD). The OCB seen in ASD vary depending on the individual's mental and chronological age as well as the etiology of their ASD. Although progress has been made in the measurement of the OCB associated with ASD, more work is needed including the potential identification of heritable endophenotypes. Likewise, important progress toward the understanding of genetic influences in ASD has been made by greater refinement of relevant phenotypes using a broad range of study designs, including twin and family-genetic studies, parametric and nonparametric linkage analyses, as well as candidate gene studies and the study of rare genetic variants. These genetic analyses could lead to the refinement of the OCB phenotypes as larger samples are studied and specific associations are replicated. Like ASD, OCB are likely to prove to be multidimensional and polygenic. Some of the vulnerability genes may prove to be generalist genes influencing the phenotypic expression of both ASD and OCD while others will be specific to subcomponents of the ASD phenotype. In order to discover molecular and genetic mechanisms, collaborative approaches need to generate shared samples, resources, novel genomic technologies, as well as more refined phenotypes and innovative statistical approaches. There is a growing need to identify the range of molecular pathways involved in OCB related to ASD in order to develop novel treatment interventions.
    Autism Research 12/2009; 2(6):293-311. · 3.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Adverse effects of invasive alien species (IAS), or biological pollution, is an increasing problem in marine coastal waters, which remains high on the environmental management agenda. All maritime countries need to assess the size of this problem and consider effective mechanisms to prevent introductions, and if necessary and where possible to monitor, contain, control or eradicate the introduced impacting organisms. Despite this, and in contrast to more enclosed water bodies, the openness of marine systems indicates that once species are in an area then eradication is usually impossible. Most institutions in countries are aware of the problem and have sufficient governance in place for management. However, there is still a general lack of commitment and concerted action plans are needed to address this problem. This paper provides recommendations resulting from an international workshop based upon a large amount of experience relating to the assessment and control of biopollution.
    Marine pollution bulletin 08/2011; 62(12):2598-604. · 2.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Serotoninergic dysfunction leads to neurodevelopmental abnormalities and behavioral impairments. Platelet hyperserotoninemia is reported as the best identified endophenotype for autism spectrum disorders. Therefore, in the present study we investigate association of TPH2, the rate limiting enzyme in 5-HT biosynthesis and ITGB3, a serotonin quantitative trait locus with ASD in the Indian population. METHODS: Population and family-based genetic association and gene-gene interaction analyses were performed to evaluate the role of ITGB3 and TPH2 markers in ASD etiology. RESULTS: Association tests using ITGB3 markers revealed significant paternal overtransmission of T allele of rs5918 to male probands. Interestingly for TPH2, we observed significant overrepresentation of A-A (rs11179000-rs4290270), G-A (rs4570625-rs4290270), G-G-A (rs4570625-rs11179001-rs4290270) and A-G-A (rs11179000-rs11179001-rs4290270) haplotypes in the controls and maternal preferential transmission of A-A (rs11179001-rs7305115), T-A-A (rs4570625-rs11179001-rs7305115) and T-A-A (rs11179000-rs11179001-rs7305115) and nontransmission of G-G-A (rs4570625-rs11179001-rs7305115) haplotypes to the affected offspring. Moreover, interaction of ITGB3 marker, rs15908 with TPH2 markers was found to be significant and influenced by the sex of the probands. Predicted individual risk, which varied from very mild to moderate, supports combined effect of these markers in ASD. CONCLUSION: Overall results of the present study indicate likely involvement of ITGB3 and TPH2 in the pathophysiology of ASD in the Indian population.
    Progress in Neuro-Psychopharmacology and Biological Psychiatry 04/2013; · 3.55 Impact Factor