Structure of the insulin receptor ectodomain reveals a folded-over conformation

CSIRO Molecular & Health Technologies, 343 Royal Parade, Parkville, Victoria 3052, Australia.
Nature (Impact Factor: 41.46). 10/2006; 443(7108):218-21. DOI: 10.1038/nature05106
Source: PubMed


The insulin receptor is a phylogenetically ancient tyrosine kinase receptor found in organisms as primitive as cnidarians and insects. In higher organisms it is essential for glucose homeostasis, whereas the closely related insulin-like growth factor receptor (IGF-1R) is involved in normal growth and development. The insulin receptor is expressed in two isoforms, IR-A and IR-B; the former also functions as a high-affinity receptor for IGF-II and is implicated, along with IGF-1R, in malignant transformation. Here we present the crystal structure at 3.8 A resolution of the IR-A ectodomain dimer, complexed with four Fabs from the monoclonal antibodies 83-7 and 83-14 (ref. 4), grown in the presence of a fragment of an insulin mimetic peptide. The structure reveals the domain arrangement in the disulphide-linked ectodomain dimer, showing that the insulin receptor adopts a folded-over conformation that places the ligand-binding regions in juxtaposition. This arrangement is very different from previous models. It shows that the two L1 domains are on opposite sides of the dimer, too far apart to allow insulin to bind both L1 domains simultaneously as previously proposed. Instead, the structure implicates the carboxy-terminal surface of the first fibronectin type III domain as the second binding site involved in high-affinity binding.

Download full-text


Available from: Patricia A Pilling,
  • Source
    • "1997; McKern et al. 2006). The severe biochemical and clinical consequences of this latter mutation highlights the crucial role of the cysteine residues in the INSR ligand-binding domain, not only in ligand binding, but also in stabilizing the three-dimensional IR structure affecting intracellular INSR processing. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Donohue syndrome (DS) is a rare and lethal autosomal recessive disease caused by mutations in the insulin receptor (INSR) gene, manifesting marked insulin resistance, severe growth retardation, hypertrichosis, and characteristic dysmorphic features. We report the clinical, molecular, and biochemical characterization of three new patients with DS, and address genotype-phenotype issues playing a role in the pathophysiology of DS. A female infant born to first-degree cousins Muslim Arab parents and two brothers born to first-degree cousins Druze parents presented classical features of DS with hypertrophic cardiomyopathy and died in infancy. Each patient was found homozygous for one missense mutation within the extracellular domain of the INSR gene. Western blot analysis identified the proreceptor of INSR, but not its mature subunits alpha and beta. Of 95 healthy Muslims, no heterozygous was found and of 52 healthy Druze from the same village, one was heterozygous. This study presents two novel familial mutations in the alpha subunit of the INSR which appear to impair post-translational processing of the INSR, resulting loss of its function. Both mutations cause DS with hypertrophic cardiomyopathy and early death. Identification of the causative mutation enables prevention of this devastating disease.
    02/2014; 2(1):64-72. DOI:10.1002/mgg3.43
  • Source
    • "Insulin and IGF-I are two closely related proteins that share similarities in both primary and tertiary structure [5]–[7]. The homology is paralleled by similarities in the structures of their receptors, the insulin receptor (IR) and the IGF-I receptor (IGF-IR) [8]–[10]. Insulin and IGF-I share a common overlapping binding site on the two receptors, which comprises structural differences in the regions governing ligand specificity [9], [11]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Insulin analogues comprising acidic amino acid substitutions at position B10 have previously been shown to display increased mitogenic potencies compared to human insulin and the underlying molecular mechanisms have been subject to much scrutiny and debate. However, B10 is still an attractive position for amino acid substitutions given its important role in hexamer formation. The aim of this study was to investigate the relationships between the receptor binding properties as well as the metabolic and mitogenic potencies of a series of insulin analogues with different amino acid substitutions at position B10 and to identify a B10-substituted insulin analogue without an increased mitogenic to metabolic potency ratio. A panel of ten singly-substituted B10 insulin analogues with different amino acid side chain characteristics were prepared and insulin receptor (both isoforms) and IGF-I receptor binding affinities using purified receptors, insulin receptor dissociation rates using BHK cells over-expressing the human insulin receptor, metabolic potencies by lipogenesis in isolated rat adipocytes, and mitogenic potencies using two different cell types predominantly expressing either the insulin or the IGF-I receptor were systematically investigated. Only analogues B10D and B10E with significantly increased insulin and IGF-I receptor affinities as well as decreased insulin receptor dissociation rates displayed enhanced mitogenic potencies in both cell types employed. For the remaining analogues with less pronounced changes in receptor affinities and insulin receptor dissociation rates, no apparent correlation between insulin receptor occupancy time and mitogenicity was observed. Several B10-substituted insulin analogues devoid of disproportionate increases in mitogenic compared to metabolic potencies were identified. In the present study, receptor binding affinity rather than insulin receptor off-rate appears to be the major determinant of both metabolic and mitogenic potency. Our results also suggest that the increased mitogenic potency is attributable to both insulin and IGF-I receptor activation.
    PLoS ONE 02/2012; 7(2):e29198. DOI:10.1371/journal.pone.0029198 · 3.23 Impact Factor
  • Source
    • "The attachment of Fabs resulted in a crystal packing arrangement that involved almost solely Fab-to-Fab interfaces, thus overcoming the hindrance to crystallization posed by the surface glycans of the IR ectodomain. These crystals were obtained by Meizhen Lou (McKern et al., 2006), who, remarkably, had also been a technician within the Beijing Insulin Structure Group working on the crystallization of insulin in the early 1970s! The three-dimensional structure revealed that the IR adopted a folded-over (inverted " V " ) conformation that placed putative ligand binding regions in close juxtaposition. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ever since the discovery of insulin and its role in the regulation of glucose uptake and utilization, there has been great interest in insulin, its structure and the way in which it interacts with its receptor and effects signal transduction. As the 90th anniversary of the discovery of insulin approaches, it is timely to provide an overview of the landmark discoveries relating to the structure and function of this remarkable molecule and its receptor.
    Frontiers in Endocrinology 11/2011; 2:76. DOI:10.3389/fendo.2011.00076
Show more