Article

Presenilins Form ER Ca2+ Leak Channels, a Function Disrupted by Familial Alzheimer's Disease-Linked Mutations

Department of Physiology, UT Southwestern Medical Center at Dallas, Dallas, TX 75390, USA.
Cell (Impact Factor: 33.12). 10/2006; 126(5):981-93. DOI: 10.1016/j.cell.2006.06.059
Source: PubMed

ABSTRACT Alzheimer's disease (AD) is a progressive and irreversible neurodegenerative disorder. Mutations in presenilins 1 and 2 (PS1 and PS2) account for approximately 40% of familial AD (FAD) cases. FAD mutations and genetic deletions of presenilins have been associated with calcium (Ca(2+)) signaling abnormalities. We demonstrate that wild-type presenilins, but not PS1-M146V and PS2-N141I FAD mutants, can form low-conductance divalent-cation-permeable ion channels in planar lipid bilayers. In experiments with PS1/2 double knockout (DKO) mouse embryonic fibroblasts (MEFs), we find that presenilins account for approximately 80% of passive Ca(2+) leak from the endoplasmic reticulum. Deficient Ca(2+) signaling in DKO MEFs can be rescued by expression of wild-type PS1 or PS2 but not by expression of PS1-M146V or PS2-N141I mutants. The ER Ca(2+) leak function of presenilins is independent of their gamma-secretase activity. Our data suggest a Ca(2+) signaling function for presenilins and provide support for the "Ca(2+) hypothesis of AD."

0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulated calcium signaling and accumulation of aberrant proteins causing endoplasmic reticulum stress are the early sign of intra-axonal pathological events in many neurodegenerative diseases, and apoptotic signaling is initiated when the stress goes beyond the maximum threshold level of endoplasmic reticulum. The fate of the cell to undergo apoptosis is controlled by Ca2(+) signaling and dynamics at the level of the endoplasmic reticulum. Endoplasmic reticulum resident inositol 1,4,5-trisphosphate receptors (IP3R) play a pivotal role in cell death signaling by mediating Ca2(+) flux from the endoplasmic reticulum into the cytosol and mitochondria. Hence, many prosurvival and prodeath signaling pathways and proteins affect Ca2(+) signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. Here, in this review, we summarize the regulatory mechanisms of inositol triphosphate receptors in calcium regulation and initiation of apoptosis during unfolded protein response.
    Journal of Molecular Neuroscience 04/2015; DOI:10.1007/s12031-015-0551-4 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this review we describe the present knowledge about store operated Ca2 + entry (SOCE) in neurons and the proteins involved in this process: STIM, as well as Orai and TRP channels. We address the issue of whether SOCE is used only to refill Ca2 + in the ER or whether Ca2 + that enters the neuronal cell during SOCE also performs signaling functions. We collected the data indicating that SOCE and its components participate in the important processes in neurons. This has implications for identifying new drug targets for the treatment of brain diseases. Evidence indicates that in neurodegenerative diseases Ca2 + homeostasis and SOCE components become dysregulated. Thus, different targets and strategies might be identified for the potential treatment of these diseases. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
    Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 01/2015; 740. DOI:10.1016/j.bbamcr.2015.01.019 · 5.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The entorhinal cortex (EC) is one of the earliest affected brain regions in Alzheimer's disease (AD). EC-amyloid pathology induces synaptic failure in the dentate gyrus (DG) with resultant behavioral impairment, but there is little known about its impact on neuronal properties in the DG. It is believed that calcium dyshomeostasis plays a pivotal role in the etiology of AD. Here, the effect of the EC amyloid pathogenesis on cellular properties of DG granule cells and also possible neuroprotective role of L-type calcium channel blockers (CCBs), nimodipine and isradipine, were investigated. The amyloid beta (Aβ) 1-42 was injected bilaterally into the EC of male rats and one week later, electrophysiological properties of DG granule cells were assessed. Voltage clamp recording revealed appearance of giant sIPSC in combination with a decrease in sEPSC frequency which was partially reversed by CCBs in granule cells from Aβ treated rats. EC amyloid pathogenesis induced a significant reduction of input resistance (Rin) accompanied by a profound decreased excitability in the DG granule cells. However, daily administration of CCBs, isradipine or nimodipine (i.c.v. for 6 days), almost preserved the normal excitability against Aβ. In conclusion, lower tendency to fire AP along with reduced Rin suggest that DG granule cells might undergo an alteration in the membrane ion channel activities which finally lead to the behavioral deficits observed in animal models and patients with early-stage Alzheimer's disease.
    PLoS ONE 02/2015; 10(2):e0117555. DOI:10.1371/journal.pone.0117555 · 3.53 Impact Factor

Full-text (2 Sources)

Download
65 Downloads
Available from
May 27, 2014