Article

Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase.

Institute of Human Genetics, University of Cologne, 50931 Cologne, Germany.
Nature Genetics (Impact Factor: 29.65). 11/2006; 38(10):1184-91. DOI: 10.1038/ng1884
Source: PubMed

ABSTRACT Neurodegenerative disorders such as Parkinson and Alzheimer disease cause motor and cognitive dysfunction and belong to a heterogeneous group of common and disabling disorders. Although the complex molecular pathophysiology of neurodegeneration is largely unknown, major advances have been achieved by elucidating the genetic defects underlying mendelian forms of these diseases. This has led to the discovery of common pathophysiological pathways such as enhanced oxidative stress, protein misfolding and aggregation and dysfunction of the ubiquitin-proteasome system. Here, we describe loss-of-function mutations in a previously uncharacterized, predominantly neuronal P-type ATPase gene, ATP13A2, underlying an autosomal recessive form of early-onset parkinsonism with pyramidal degeneration and dementia (PARK9, Kufor-Rakeb syndrome). Whereas the wild-type protein was located in the lysosome of transiently transfected cells, the unstable truncated mutants were retained in the endoplasmic reticulum and degraded by the proteasome. Our findings link a class of proteins with unknown function and substrate specificity to the protein networks implicated in neurodegeneration and parkinsonism.

1 Bookmark
 · 
135 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanism responsible for degenerative process in the nigrostriatal dopaminergic system in Parkinson's disease (PD) remains unknown. One major advance in this field has been the discovery of several genes associated to familial PD, including alpha synuclein, parkin, LRRK2, etc., thereby providing important insight toward basic research approaches. There is an consensus in neurodegenerative research that mitochon dria dysfunction, protein degradation dysfunction, aggregation of alpha synuclein to neurotoxic oligomers, oxidative and endoplasmic reticulum stress, and neuroinflammation are involved in degeneration of the neuromelanin-containing dopaminergic neurons that are lost in the disease. An update of the mechanisms relating to neurotoxins that are used to produce preclinical models of Parkinson´s disease is presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and rotenone have been the most wisely used neurotoxins to delve into mechanisms involved in the loss of dopaminergic neurons containing neuromelanin. Neurotoxins generated from dopamine oxidation during neuromelanin formation are likewise reviewed, as this pathway replicates neurotoxin-induced cellular oxidative stress, inactivation of key proteins related to mitochondria and protein degradation dysfunction, and formation of neurotoxic aggregates of alpha synuclein. This survey of neurotoxin modeling-highlighting newer technologies and implicating a variety of processes and pathways related to mechanisms attending PD-is focused on research studies from 2012 to 2014.
    Neurotoxicity Research 01/2015; 27(3). DOI:10.1007/s12640-015-9519-y · 3.15 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parkinson's disease is a multifactorial disorder with several genes linked to the familial types of the disease. ATP13A2 is one of those genes and encode for a transmembrane protein localized in lysosomes and late endosomes. Previous studies suggested the roles of this protein in lysosomal functions and cellular ion homeostasis. Here, we set out to investigate the role of ATP13A2 in lysosomal function and in metabolism of α-synuclein, another PD-linked protein whose accumulation is implicated in the pathogenesis. We generated non-sense mutations in both copies of ATP13A2 gene in SH-SY5Y human neuroblastoma cells. We examined lysosomal function of ATP13A2-/- cells by measuring the accumulation of lysosomal substrate proteins, such as p62 and polyubiquitinated proteins, induction of acidic compartments, and degradation of ectopically introduced dextran. None of these measures were altered by ATP13A2 deficiency. The steady-state levels of α-synuclein in cells or secretion of this protein were unaltered either in ATP13A2-/- compared to the normal cells. Therefore, the proposed roles of ATP13A2 in lysosomal functions may not be generalized and may depend on the cellular context. The ATP13A2-/- cells generated in the current study may provide a useful control for studies on the roles of PD genes in lysosomal functions.
    12/2014; 23(4):365-71. DOI:10.5607/en.2014.23.4.365
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most neurodegenerative diseases that afflict humans are associated with the intracytoplasmic deposition of aggregate-prone proteins in neurons. Autophagy is a powerful process for removing such proteins. In this Review, we consider how certain neurodegenerative diseases may be associated with impaired autophagy and how this may affect pathology. We also discuss how autophagy induction may be a plausible therapeutic strategy for some conditions and review studies in various models that support this hypothesis. Finally, we briefly describe some of the signaling pathways that may be amenable to therapeutic targeting for these goals.
    Journal of Clinical Investigation 01/2015; 125(1):65-74. DOI:10.1172/JCI73944 · 13.77 Impact Factor

Full-text (2 Sources)

Download
60 Downloads
Available from
May 19, 2014