Article

Novel low-kVp beamlet system for choroidal melanoma

Cancer Therapy and Research Center, San Antonio, TX, USA.
Radiation Oncology (Impact Factor: 2.36). 02/2006; 1:36. DOI: 10.1186/1748-717X-1-36
Source: PubMed

ABSTRACT Treatment of choroidal melanoma with radiation often involves placement of customized brachytherapy eye-plaques. However, the dosimetric properties inherent in source-based radiotherapy preclude facile dose optimization to critical ocular structures. Consequently, we have constructed a novel system for utilizing small beam low-energy radiation delivery, the Beamlet Low-kVp X-ray, or "BLOKX" system. This technique relies on an isocentric rotational approach to deliver dose to target volumes within the eye, while potentially sparing normal structures.
Monte Carlo N-Particle (MCNP) transport code version 5.0(14) was used to simulate photon interaction with normal and tumor tissues within modeled right eye phantoms. Five modeled dome-shaped tumors with a diameter and apical height of 8 mm and 6 mm, respectively, were simulated distinct positions with respect to the macula iteratively. A single fixed 9 x 9 mm2 beamlet, and a comparison COMS protocol plaque containing eight I-125 seeds (apparent activity of 8 mCi) placed on the scleral surface of the eye adjacent to the tumor, were utilized to determine dosimetric parameters at tumor and adjacent tissues. After MCNP simulation, comparison of dose distribution at each of the 5 tumor positions for each modality (BLOKX vs. eye-plaque) was performed.
Tumor-base doses ranged from 87.1-102.8 Gy for the BLOKX procedure, and from 335.3-338.6 Gy for the eye-plaque procedure. A reduction of dose of at least 69% to tumor base was noted when using the BLOKX. The BLOKX technique showed a significant reduction of dose, 89.8%, to the macula compared to the episcleral plaque. A minimum 71.0 % decrease in dose to the optic nerve occurred when the BLOKX was used.
The BLOKX technique allows more favorable dose distribution in comparison to standard COMS brachytherapy, as simulated using a Monte Carlo iterative mathematical modeling. Future series to determine clinical utility of such an approach are warranted.

0 Followers
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: By providing superior localization and immobilization, stereotactic radiosurgery (SRS) is capable of delivering millimeter spheres of dose to intracranial targets with submillimeter precision. Several authors have proposed new SRS solutions to dramatically reduce beam penumbra to hundreds of microns. These solutions require new quality assurance methods capable of penumbra measurement at the micron scale. This article examines the capability of a digital microscope, with translation stage and associated software, to resolve dose gradients in Gafchromic EBT film at this level. To produce very steep penumbra, films were irradiated in phantom beneath pinhole collimators using lower energy x rays (100 kVp, 300 kVp, and Iridium-192) and minimal geometric penumbra contribution. For film analysis, a method was developed which improved the signal to noise ratio by finding the center of the irradiation spot, generating several radial dose profiles and averaging these to obtain the final off-axis dose profile. Optical density was converted to dose using a calibration curve. The experimentally determined off-axis dose profiles were compared with MCNP Monte Carlo simulations which replicated the irradiation geometry and served to validate our measured data. The measured 80%-20% penumbral widths were 46 microm +/- 26 microm (100 kVp, 2 mm field size), 69 microm +/- m 27 microm (300 kVp, 2 mm field size), and 241 microm +/-31 microm (Ir-192, 1 mm field size). These penumbral widths agreed with Monte Carlo simulations within experimental uncertainty. Our findings suggest that reading Gafchromic EBT films using a digital microscope with translation stage is suitable for the quality assurance of very sharp penumbra able to resolve gradients to within at least 30 microm.
    Medical Physics 09/2008; 35(8):3740-7. DOI:10.1118/1.2953565 · 3.01 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from