N-(4-hydroxyphenyl)retinamide induces apoptosis in human retinal pigment epithelial cells: Retinoic acid receptors regulate apoptosis, reactive oxygen species generation, and the expression of heme oxygenase-1 and Gadd153

Biochemistry Section, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, 7 Memorial Drive, Bethesda, MD 20892, USA.
Journal of Cellular Physiology (Impact Factor: 3.87). 12/2006; 209(3):854-65. DOI: 10.1002/jcp.20774
Source: PubMed

ABSTRACT N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid (RA) derivative and a potential cancer preventive agent, is known to exert its chemotherapeutic effects in cancer cells through induction of apoptosis. Earlier work from our laboratory has shown that relatively low concentrations of 4HPR induce neuronal differentiation of cultured human retinal pigment epithelial (ARPE-19) cells (Chen et al., 2003, J Neurochem 84:972-981). However, at higher concentrations of 4HPR, these cells showed morphological changes including cell shrinkage and cell death. Here we demonstrate that ARPE-19 cells treated with 4HPR exhibit a dose- and time-dependent induction of apoptosis as evidenced by morphological changes, mono- and oligonucleosome generation, and increased activity of caspases 2 and 3. The 4HPR-induced apoptosis as well as the activation of caspases 2 and 3 were blocked by both retinoic acid receptors (RAR) pan-antagonists, AGN193109 and AGN194310, and by an RARalpha-specific antagonist AGN194301. 4HPR treatment also increased reactive oxygen species (ROS) generation in ARPE-19 cells in a time-dependent manner as determined from the oxidation of 2',7'-dichlorofluorescin. In addition, the increase in the expression of heme oxygenase-1 (HO-1), a stress response protein, and the growth arrest and DNA damage-inducible transcription factor 153 (Gadd153) in response to the ROS generation were also blocked by these receptor antagonists. Pyrrolidine dithiocarbamate (PDTC), a free-radical scavenger, inhibited 4HPR-induced ROS generation, the expression of its downstream mediator, Gadd153, and apoptosis in the pretreated cells. Therefore, our results, clearly demonstrate that 4HPR induces apoptosis in ARPE-19 cells and that RARs mediate this process by regulating ROS generation as well as the expression of Gadd153 and HO-1.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Death receptors are important modulators of the extrinsic apoptotic pathway. Activating certain death receptors such as death receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) (i.e., DR4 and DR5) selectively kills cancer cells via induction of apoptosis while sparing normal cells. Thus, soluble recombinant TRAIL and agonistic antibodies to DR4 or DR5 have progressed to phase I and phase II clinical trials. Many cancer therapeutic drugs including chemotherapeutic agents have been shown to induce the expression or redistribution at the cell surface of death receptors including TRAIL death receptors. In addition, chemotherapeutic agents have also been shown to enhance induction of apoptosis by TRAIL or agonistic antibodies or overcome cell resistance to TRAIL or agonistic antibodies. Targeted induction of apoptosis by activation of the death receptor-mediated extrinsic apoptotic pathway should be an ideal therapeutic strategy to eliminate cancer cells. Therefore, death receptors, particularly TRAIL death receptors, have emerged as an important cancer therapeutic target. This article will focus on reviewing and discussing the modulation of death receptors by cancer therapeutic agents and its implications in cancer therapy.
    Cancer biology & therapy 03/2008; 7(2):163-73. DOI:10.4161/cbt.7.2.5335 · 3.63 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the effect of N-4-hydroxyphenyl retinamide (4-HPR) on experimental laser-induced choroidal neovascularization (CNV) and on the expression and secretion of relevant growth factors by cultured human retinal pigment epithelial (RPE) cells. CNV was induced by laser photocoagulation in C57BL/6 mice. 4-HPR (0.2 or 1 mg) or vehicle, was injected intraperitoneally twice daily for 14 days. Plasma and tissue levels of 4-HPR were measured by HPLC. CNV was evaluated by fluorescein angiography, histology, and quantitative confocal analysis of isolectin B4 histochemistry on days 7 and 14. Induction of apoptosis and expression and secretion of growth factors was studied in 4-HPR-treated RPE cultures. Mice treated with 4-HPR exhibited time- and dose-dependent increases in plasma and tissue 4-HPR levels. CNV lesions showed increased volume with increased vascular leakage and contained fewer lesion-associated RPE in treated versus untreated mice. Treatment of nonpolarized RPE cultures with 4-HPR in the presence of serum resulted in RPE apoptosis; however, apoptosis was minimal in similarly treated highly polarized RPE. Treatment of RPE cells with 4-HPR resulted in the upregulation of VEGF-A and -C (P < 0.05) and Ang-1 (P < 0.01) mRNA and increased secretion of VEGF-A and -C (P < 0.05), whereas pigment epithelium-derived growth factor (PEDF) and thrombospondin (TSP)-1 mRNA expression and secretion were downregulated (P < 0.05). 4-HPR increases lesion size and leakage in laser-induced CNV and is associated with the upregulation of key proangiogenic factors and the downregulation of antiangiogenic factors. Consistent with the preferential loss of RPE in CNV lesions in vivo, 4-HPR induces apoptosis of nonpolarized RPE in the presence of serum.
    Investigative Ophthalmology &amp Visual Science 04/2008; 49(3):1210-20. DOI:10.1167/iovs.07-0667 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have shown previously that N-(4-hydroxyphenyl)retinamide (4HPR, fenretinide), a retinoic acid derivative, induces neuronal differentiation in cultured human retinal pigment epithelial (RPE) cells [Chen et al., J. Neurochem., 84 (2003), 972]. We asked the question whether the mitogen-activated protein kinase (MAPK) pathway is involved in the regulation of the 4HPR-induced neuronal differentiation of RPE (ARPE-19) cells. When we treated ARPE-19 cells with 4HPR, c-Raf and MEK1/2 kinase were activated resulting in activation of the downstream effector ERK1/2 and of SAPK/JNK. By blocking the upstream kinase MEK1/2 with specific inhibitor U0126 we abrogated the 4HPR-induced phosphorylation of ERK1/2 and SAPK/JNK, indicating that the neuronal differentiation occurs through a positive cross-talk between the ERK and the SAPK/JNK pathways. Both U0126 and the suppression of ERK1/2 expression with small interfering RNA effectively blocked the 4HPR-induced neuronal differentiation of RPE cells and the expression of calretinin. The activated ERK1/2 then induced a sequential activation of p90RSK, and increase in phosphorylation of transcription factors c-fos and c-jun leading to transcriptional activation of AP-1. Taken together, our results clearly demonstrate that c-Raf/MEK1/2 signaling cascade involving ERK1/2 plays a central role in mediating the 4HPR-induced neuronal differentiation and calretinin expression in the human ARPE-19 retinal pigment epithelial cell line.
    Journal of Neurochemistry 06/2008; 106(2):591-602. DOI:10.1111/j.1471-4159.2008.05409.x · 4.24 Impact Factor
Show more