Article

Opposed effects of hypertonic saline on contusions and noncontused brain tissue in patients with severe traumatic brain injury.

Department of Anesthesiology and Critical Care, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris; Université Pierre et Marie Curie-Paris 6, France.
Critical Care Medicine (Impact Factor: 6.12). 01/2007; 34(12):3029-33. DOI: 10.1097/01.CCM.0000243797.42346.64
Source: PubMed

ABSTRACT The aim of this study was to quantify the effect of hypertonic saline solution on contused and noncontused brain tissue in patients with traumatic brain injury. We hypothesize that hypertonic saline would increase the volume of brain contusion while decreasing the volume of noncontused hemispheric areas.
Prospective observational study.
Neurosciences critical care unit of a university hospital.
Fourteen traumatic brain injury patients with increased intracranial pressure.
A computed tomography scan was performed before and after a 20-min infusion of 40 mL of 20% saline.
The volume, weight, and specific gravity of contused and noncontused hemispheric areas were assessed from computed tomography DICOM images by using a custom-designed software (BrainView). Physiologic variables and natremia were measured before and after infusion. Hypertonic saline significantly increased natremia from 143 +/- 5 to 146 +/- 5 mmol/L and decreased intracranial pressure from 23 +/- 3 to 17 +/- 5 mm Hg. The volume of the noncontused hemispheric areas decreased by 13 +/- 8 mL whereas the specific gravity increased by 0.029 +/- 0.027%. The volume of contused hemispheric tissue increased by 5 +/- 5 mL without any con-comitant change in density. There was a wide interindividual variability in the response of the noncontused hemispheric tissue with changes in specific gravity varying between -0.0124% and 0.0998%.
Three days after traumatic brain injury, the blood- brain barrier remains semipermeable in noncontused areas but not in contusions. Further studies are needed to tailor the use of hypertonic saline in patients with traumatic brain injury according to the volume of contusions assessed on computed tomography.

0 Bookmarks
 · 
118 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blood brain barrier (BBB) compromise is a key pathophysiological component of secondary traumatic brain injury characterized by edema and neuroinflammation in a previously immune-privileged environment. Current assays for BBB permeability are limited by working size, harsh extraction processes, suboptimal detection via absorbance, and wide excitation fluorescence spectra. In this study, we evaluate the feasibility of Alexa Fluor 680, a far-red dye bioconjugated to dextran, as an alternative assay to improve resolution and sensitivity.
    Journal of Surgical Research 05/2014; · 2.02 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypernatremia is common following traumatic brain injury (TBI) and occurs from a variety of mechanisms, including hyperosmotic fluids, limitation of free water, or diabetes insipidus. The purpose of this systematic review was to assess the relationship between hypernatremia and mortality in patients with TBI. We searched the following databases up to November 2012: MEDLINE, EMBASE, and CENTRAL. Using a combination of MeSH and text terms, we developed search filters for the concepts of hypernatremia and TBI and included studies that met the following criteria: (1) compared hypernatremia to normonatremia, (2) adult patients with TBI, (3) presented adjusted outcomes for mortality or complications. Bibliographic and conference search yielded 1,152 citations and 11 abstracts, respectively. Sixty-five articles were selected for full-text review with 5 being included in our study. All were retrospective cohort studies totaling 5,594 (range 100--4,296) patients. There was marked between-study heterogeneity. The incidence of hypernatremia ranged between 16% and 40%. Use of hyperosmolar therapy was presented in three studies (range 14-85% of patients). Hypernatremia was associated with increased mortality across all four studies that presented this outcome. Only one study considered diabetes insipidus (DI) in their analysis where hypernatremia was associated with increased mortality in patients who did not receive DDAVP. Although hypernatremia was associated with increased mortality in the included studies, there was marked between-study heterogeneity. DI was a potential confounder in several studies. Considering these limitations, the clinical significance of hypernatremia in TBI is difficult to establish at this stage.
    Annals of intensive care. 11/2013; 3(1):35.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the fact that it has been used since the 1960s in diseases associated with brain edema and has been investigated in >150 publications on head injury, very little has been published on the outcome of osmotherapy. We can only speculate whether osmotherapy improves outcome, has no effect on outcome, or leads to worse outcome. Here we describe the action and potentially beneficial and adverse effects of the 2 most commonly used osmotic solutions, mannitol and hypertonic saline, and present some critical aspects of their use. There is a well-documented transient intracranial pressure (ICP)-reducing effect of osmotherapy, but an adverse rebound increase in ICP after its withdrawal has been discussed extensively in the literature and is an expected pathophysiological phenomenon. From side effects related to renal and pulmonary failure, electrolyte disturbances, and a rebound increase in ICP, osmotherapy can be negative for outcome, which may explain why we lack scientific support for its use. These drawbacks, and the fact that the most recent Cochrane meta-analyses of osmotherapy in brain edema and stroke could not find any beneficial effects on outcome, make routine use of osmotherapy in brain edema doubtful. Nevertheless, the use of osmotherapy as a temporary measure may be justified to acutely prevent brain stem compression until other measures, such as evacuation of space-occupying lesions or decompressive craniotomy, can be performed. This article is the Con part in a Pro-Con debate in the present journal on the general routine use of osmotherapy in brain edema.
    Journal of neurosurgical anesthesiology 10/2012; 24(4):407-12. · 2.41 Impact Factor

Full-text

View
3 Downloads
Available from