Article

Ginsenoside-Rd from panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells.

Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, PR China.
European Journal of Pharmacology (Impact Factor: 2.68). 11/2006; 548(1-3):129-36. DOI: 10.1016/j.ejphar.2006.08.001
Source: PubMed

ABSTRACT Previously, it was found that total saponins from panax notoginseng inhibited Ca2+ influx coupling to activation of alpha1-adrenoceptor. This study was designed to investigate the effects of ginsenoside-Rd from total saponins of panax notoginseng on receptor-operated (ROCC) and store-operated (SOCC) Ca2+ channels in vascular smooth muscle cells using fura-2 fluorescence, whole cell patch clamp ion channel recording, radio-ligand-receptor binding, 45Ca2+ radio-trace and organ bath techniques. It was found that ginsenoside-Rd reduced phenylephrine-induced contractile responses and Ca2+ influx in normal media without significant effect on these responses in Ca2+ -free media. Ginsenoside-Rd also decreased phenylephrine- and thapsigargin-induced inward Ca2+ currents, and attenuated thapsigargin- and 1-oleoy-2-acetyl-sn-glycerol (OAG)-induced cation entries that are coupled to ROCC and SOCC respectively. Ginsenoside-Rd failed to inhibit KCl-induced contraction of rat aortal rings and Ca2+ influx, and did not alter voltage-dependent inward Ca2+ current (VDCC) which was blocked by nifedipine. Also, ginsenoside-Rd did not change binding site and affinity of [3H]-prazosin for alpha1-adrenoceptor in the vascular plasma membrane. These results suggest that ginsenoside-Rd, as an inhibitor, remarkably inhibits Ca2+ entry through ROCC and SOCC without effects on VDCC and Ca2+ release in vascular smooth muscle cells.

0 Followers
 · 
106 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saponins, an important group of bioactive plant natural products, are glycosides of triterpenoid or steroidal aglycones. Their diverse biological activities are ascribed to their different structures. Saponins have long been recognized as key ingredients in traditional Chinese medicine. Accumulated evidence suggests that saponins have significant neuroprotective effects on attenuation of central nervous system disorders, such as stroke, Alzheimer's disease, Parkinson's disease, and Huntington's disease. However, our understanding of the mechanisms underlying the observed effects remains incomplete. Based on recently reported data from basic and clinical studies, this review highlights the proposed mechanisms of their neuroprotective function including antioxidant, modulation of neurotransmitters, anti-apoptosis, anti-inflammation, attenuating Ca2+ influx, modulating neurotrophic factors, inhibiting tau phosphorylation, and regeneration of neural networks. Copyright © 2014 John Wiley & Sons, Ltd.
    Phytotherapy Research 11/2014; DOI:10.1002/ptr.5246 · 2.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Panax notoginseng saponins (PNS) are one of the most important compounds derived from roots of the herb Panax notoginseng which are traditionally used as a hemostatic medicine to control internal and external bleeding in China for thousands of years. To date, at least twenty saponins were identified and some of them including notoginsenoside R1, ginsenoside Rb1, and ginsenoside Rg1 were researched frequently in the area of cardiovascular protection. However, the protective effects of PNS on cardiovascular diseases based on experimental studies and its underlying mechanisms have not been reviewed systematically. This paper reviewed the pharmacology of PNS and its monomers Rb1, Rg1, and R1 in the treatment for cardiovascular diseases.
    Evidence-based Complementary and Alternative Medicine 07/2014; 2014:204840. DOI:10.1155/2014/204840 · 2.18 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Compound xueshuantong capsule (CXC) is an oral traditional Chinese herbal formula (CHF) comprised of Panax notoginseng (PN), Radix astragali (RA), Salvia miltiorrhizae (SM), and Radix scrophulariaceae (RS). The present investigation was designed to explore the core bioactive components promoting blood circulation in CXC using high-performance liquid chromatography (HPLC) and animal studies. CXC samples were prepared with different proportions of the 4 herbs according to a four-factor, nine-level uniform design. CXC samples were assessed with HPLC, which identified 21 components. For the animal experiments, rats were soaked in ice water during the time interval between two adrenaline hydrochloride injections to reduce blood circulation. We assessed whole-blood viscosity (WBV), erythrocyte aggregation and red corpuscle electrophoresis indices (EAI and RCEI, respectively), plasma viscosity (PV), maximum platelet aggregation rate (MPAR), activated partial thromboplastin time (APTT), and prothrombin time (PT). Based on the hypothesis that CXC sample effects varied with differences in components, we performed grey relational analysis (GRA), principal component analysis (PCA), ridge regression (RR), and radial basis function (RBF) to evaluate the contribution of each identified component. Our results indicate that panaxytriol, ginsenoside Rb1, angoroside C, protocatechualdehyde, ginsenoside Rd, and calycosin-7-O-β-D-glucoside are the core bioactive components, and that they might play different roles in the alleviation of circulation dysfunction. Panaxytriol and ginsenoside Rb1 had close relevance to red blood cell (RBC) aggregation, angoroside C was related to platelet aggregation, protocatechualdehyde was involved in intrinsic clotting activity, ginsenoside Rd affected RBC deformability and plasma proteins, and calycosin-7-O-β-D-glucoside influenced extrinsic clotting activity. This study indicates that angoroside C, calycosin-7-O-β-D-glucoside, panaxytriol, and protocatechualdehyde may have novel therapeutic uses.
    PLoS ONE 11/2014; 9(11):e112675. DOI:10.1371/journal.pone.0112675 · 3.53 Impact Factor