Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease

Washington State University, پولمن، واشینگتن, Washington, United States
Endocrinology (Impact Factor: 4.64). 01/2007; 147(12):5515-23. DOI: 10.1210/en.2006-0640
Source: PubMed

ABSTRACT The fetal basis of adult disease is poorly understood on a molecular level and cannot be solely attributed to genetic mutations or a single etiology. Embryonic exposure to environmental compounds has been shown to promote various disease states or lesions in the first generation (F1). The current study used the endocrine disruptor vinclozolin (antiandrogenic compound) in a transient embryonic exposure at the time of gonadal sex determination in rats. Adult animals from the F1 generation and all subsequent generations examined (F1-F4) developed a number of disease states or tissue abnormalities including prostate disease, kidney disease, immune system abnormalities, testis abnormalities, and tumor development (e.g. breast). In addition, a number of blood abnormalities developed including hypercholesterolemia. The incidence or prevalence of these transgenerational disease states was high and consistent across all generations (F1-F4) and, based on data from a previous study, appears to be due in part to epigenetic alterations in the male germ line. The observations demonstrate that an environmental compound, endocrine disruptor, can induce transgenerational disease states or abnormalities, and this suggests a potential epigenetic etiology and molecular basis of adult onset disease.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: nd edition, published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who you know, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution's website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: Gore A C and Crews D Environmental Endocrine Disruption of Brain and Behavior. In:
    Hormones, Brain, and Behavior, Second Edition edited by D.W. Pfaff, A. Arnold, A. Etgen, S. Fahrbach, R. Moss, and R. Rubin, 01/2009: chapter Environmental endocrine disruption of brain and behavior: pages 1789-1816; Academic Press, New York.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A growing body of evidence demonstrates that adverse events early in development, and particularly during intrauterine life, may program risks for diseases in adult life. Increasing evidence has been accumulated indicating the important role of epigenetic regulation including DNA methylation, histone modifications and miRNAs in developmental programming. Among the environmental factors which play an important role in programming of chronic pathologies, the endocrine-disrupting chemicals (EDCs) that have estrogenic, anti-estrogenic, and anti-androgenic activity are of specific concern because the developing organism is extremely sensitive to perturbation by substances with hormone-like activity. Among EDCs, there are many substances that are constantly present in the modern human environment or are in widespread use, including dioxin and dioxin-like compounds, phthalates, agricultural pesticides, polychlorinated biphenyls, industrial solvents, pharmaceuticals, and heavy metals. Apart from their common endocrine active properties, several EDCs have been shown to disrupt developmental epigenomic programming. The purpose of this review is to provide a summary of recent research findings which indicate that exposure to EDCs during in-utero and/or neonatal development can cause long-term health outcomes via mechanisms of epigenetic memory.
    12/2014; 5(6):419-429. DOI:10.14336/AD.2014.0500419
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DNA methylation and histone modification promote opening and closure of chromatin structure, which affects gene expression without altering the DNA sequence. Epigenetic markers regulate the dynamic nature of chromatin structure at different levels: DNA, histone, noncoding RNAs, as well as the higher-order chromatin structure. Accumulating evidence strongly suggests that arsenic-induced carcinogenesis involves frequent changes in the epigenetic marker. However, progress in identifying arsenic-induced epigenetic changes has already been made using genome-wide approaches; the biological significance of these epigenetic changes remains unknown. Moreover, arsenic-induced changes in the chromatin state alter gene expression through the epigenetic mechanism. The current review provides a summary of recent literature regarding epigenetic changes caused by arsenic in carcinogenesis. We highlight the transgenerational studies needed to explicate the biological significance and toxicity of arsenic over a broad spectrum.
    Journal of Environmental Pathology Toxicology and Oncology 01/2015; 34(1). DOI:10.1615/JEnvironPatholToxicolOncol.2014012066 · 0.88 Impact Factor