Cell physiology of cAMP sensor Epac

Department of Physiology and Neuroscience, New York University School of Medicine, New York, NY 10016, USA.
The Journal of Physiology (Impact Factor: 4.54). 12/2006; 577(Pt 1):5-15. DOI: 10.1113/jphysiol.2006.119644
Source: PubMed

ABSTRACT Epac is an acronym for the exchange proteins activated directly by cyclic AMP, a family of cAMP-regulated guanine nucleotide exchange factors (cAMPGEFs) that mediate protein kinase A (PKA)-independent signal transduction properties of the second messenger cAMP. Two variants of Epac exist (Epac1 and Epac2), both of which couple cAMP production to the activation of Rap, a small molecular weight GTPase of the Ras family. By activating Rap in an Epac-mediated manner, cAMP influences diverse cellular processes that include integrin-mediated cell adhesion, vascular endothelial cell barrier formation, and cardiac myocyte gap junction formation. Recently, the identification of previously unrecognized physiological processes regulated by Epac has been made possible by the development of Epac-selective cyclic AMP analogues (ESCAs). These cell-permeant analogues of cAMP activate both Epac1 and Epac2, whereas they fail to activate PKA when used at low concentrations. ESCAs such as 8-pCPT-2'-O-Me-cAMP and 8-pMeOPT-2'-O-Me-cAMP are reported to alter Na(+), K(+), Ca(2+) and Cl(-) channel function, intracellular [Ca(2+)], and Na(+)-H(+) transporter activity in multiple cell types. Moreover, new studies examining the actions of ESCAs on neurons, pancreatic beta cells, pituitary cells and sperm demonstrate a major role for Epac in the stimulation of exocytosis by cAMP. This topical review provides an update concerning novel PKA-independent features of cAMP signal transduction that are likely to be Epac-mediated. Emphasized is the emerging role of Epac in the cAMP-dependent regulation of ion channel function, intracellular Ca(2+) signalling, ion transporter activity and exocytosis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chronic carotid body (CB) activation is now recognized as being essential in the development of hypertension and promoting insulin resistance; thus, it is imperative to characterize the chemotransduction mechanisms of this organ in order to modulate its activity and improve patient outcomes. For several years, and although controversial, cyclic adenosine monophosphate (cAMP) was considered an important player in initiating the activation of the CB. However, its relevance was partially displaced in the 90s by the emerging role of the mitochondria and molecules such as AMP-activated protein kinase and O2-sensitive K(+) channels. Neurotransmitters/neuromodulators binding to metabotropic receptors are essential to chemotransmission in the CB, and cAMP is central to this process. cAMP also contributes to raise intracellular Ca(2+) levels, and is intimately related to the cellular energetic status (AMP/ATP ratio). Furthermore, cAMP signaling is a target of multiple current pharmacological agents used in clinical practice. This review (1) provides an outline on the classical view of the cAMP-signaling pathway in the CB that originally supported its role in the O2/CO2 sensing mechanism, (2) presents recent evidence on CB cAMP neuromodulation and (3) discusses how CB activity is affected by current clinical therapies that modify cAMP-signaling, namely dopaminergic drugs, caffeine (modulation of A2A/A2B receptors) and roflumilast (PDE4 inhibitors). cAMP is key to any process that involves metabotropic receptors and the intracellular pathways involved in CB disease states are likely to involve this classical second messenger. Research examining the potential modification of cAMP levels and/or interactions with molecules associated with CB hyperactivity is currently in its beginning and this review will open doors for future explorations.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015. Published by Elsevier Ltd.
    Journal of Molecular and Cellular Cardiology 01/2015; 81. DOI:10.1016/j.yjmcc.2015.01.015 · 5.15 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently published findings indicate that a knockout (KO) of soluble adenylyl cyclase (sAC, also known as AC-10) gene expression in mice leads to defective glucoregulation that is characterized by reduced pancreatic insulin secretion and reduced intraperitoneal glucose tolerance. Summarized here are current concepts regarding the molecular basis for this phenotype, with special emphasis on the potential role of sAC as a determinant of glucose-stimulated insulin secretion. Highlighted is new evidence that in pancreatic beta cells, oxidative glucose metabolism stimulates mitochondrial CO2 production that in turn generates bicarbonate ion (HCO3(-)). Since HCO3(-) binds to and directly stimulates the activity of sAC, we propose that glucose-stimulated cAMP production in beta cells is mediated not simply by transmembrane adenylyl cyclases (TMACs), but also by sAC. Based on evidence that sAC is expressed in mitochondria, there exists the possibility that beta-cell glucose metabolism is linked to mitochondrial cAMP production with consequent facilitation of oxidative phosphorylation. Since sAC is also expressed in the cytoplasm, sAC catalyzed cAMP production may activate cAMP sensors such as PKA and Epac2 to control ion channel function, intracellular Ca(2+) handling, and Ca(2+)-dependent exocytosis. Thus, we propose that the existence of sAC in beta cells provides a new and unexpected explanation for previously reported actions of glucose metabolism to stimulate cAMP production. It seems possible that alterations of sAC activity might be of importance when evaluating new strategies for the treatment of type 2 diabetes (T2DM), or when evaluating why glucose metabolism fails to stimulate insulin secretion in patients diagnosed with T2DM. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 05/2014; 1842:2593-2600. DOI:10.1016/j.bbadis.2014.06.023 · 5.09 Impact Factor


Available from
May 20, 2014