Article

Leptin regulation of the mesoaccumbens dopamine pathway.

Department of Medicine and Division of Endocrinology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115, USA.
Neuron (Impact Factor: 15.98). 10/2006; 51(6):811-22. DOI: 10.1016/j.neuron.2006.09.006
Source: PubMed

ABSTRACT Leptin is an adipose-derived hormone that acts on hypothalamic leptin receptors to regulate energy balance. Leptin receptors are also expressed in extrahypothalamic sites including the ventral tegmental area (VTA), critical to brain reward circuitry. We report that leptin targets DA and GABA neurons of the VTA, inducing phosphorylation of signal-transducer-and-activator-of-transcription-3 (STAT3). Retrograde tracing combined with pSTAT3 immunohistochemistry show leptin-responsive VTA neurons projecting to nucleus accumbens (NAc). Assessing leptin function in the VTA, we showed that ob/ob mice had diminished locomotor response to amphetamine and lacked locomotor sensitization to repeated amphetamine injections, both defects reversed by leptin infusion. Electrically stimulated DA release from NAc shell terminals was markedly reduced in ob/ob slice preparations, and NAc DA levels and TH expression were lower. These data define a role for leptin in mesoaccumbens DA signaling and indicate that the mesoaccumbens DA pathway, critical to integrating motivated behavior, responds to this adipose-derived signal.

0 Followers
 · 
150 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hunger, mostly initiated by a deficiency in energy, induces food seeking and intake. However, the drive toward food is not only regulated by physiological needs, but is motivated by the pleasure derived from ingestion of food, in particular palatable foods. Therefore, feeding is viewed as an adaptive motivated behavior that involves integrated communication between homeostatic feeding circuits and reward circuits. The initiation and termination of a feeding episode are instructed by a variety of neuronal signals, and maladaptive plasticity in almost any component of the network may lead to the development of pathological eating disorders. In this review we will summarize the latest understanding of how the feeding circuits and reward circuits in the brain interact. We will emphasize communication between the hypothalamus and the mesolimbic dopamine system and highlight complexities, discrepancies, open questions and future directions for the field.
    01/2015; DOI:10.1007/s11515-015-1348-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prior work using animal models to study the effects of obesogenic diets on food motivation have generated inconsistent results, with some reporting increases and others reporting decreases in responding on food-reinforced tasks. Here, we identified two specific variables that may account for these discrepant outcomes - the length of time on the obesigenic diet and the familiarity of the food reinforcer - and examined the independent roles of these factors. Time on diet was found to be inversely related to food motivation, as rats consuming a 40% high-fat diet (HFD) for only 3weeks did not differ from chow-fed rats when responding for a sucrose reinforcer on a progressive ratio (PR) schedule, but responding was suppressed after 6weeks of ad lib HFD consumption. Explicitly manipulating experience with the sucrose reinforcer by pre-exposing half the rats prior to 10weeks of HFD consumption attenuated the motivational deficit seen in the absence of this familiarity, resulting in obese rats performing at the same level as lean rats. Finally, after 8weeks on a HFD, rats did not express a conditioned place preference for sucrose, indicating a decrement in reward value independent of motivation. These findings are consistent with prior literature showing an increase in food motivation for rats with a shorter time consuming the obesigenic diet, and for those with more prior experience with the reinforcer. This account also helps reconcile these findings with increased food motivation in obese humans due to extensive experience with palatable food and suggests that researchers engaging in non-human animal studies of obesity would better model the conditions under which human obesity develops by using a varied, cafeteria-style diet to increase the breadth of food experiences. Copyright © 2015 Elsevier Inc. All rights reserved.
    Physiology & Behavior 01/2015; 141C:69-77. DOI:10.1016/j.physbeh.2015.01.008 · 3.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Eating depends strongly on learning processes which, in turn, depend on motivation. Conditioned learning, where individuals associate environmental cues with receipt of a reward, forms an important part of hedonic mechanisms; the latter contribute to the development of human overweight and obesity by driving excessive eating in what may become a vicious cycle. Although mice are commonly used to explore the regulation of human appetite, it is not known whether their conditioned learning of food rewards varies as a function of body mass. To address this, groups of adult male mice of differing body weights were tested two appetitive conditioning paradigms (pavlovian and operant) as well as in food retrieval and hedonic preference tests in an attempt to dissect the respective roles of learning/motivation and energy state in the regulation of feeding behavior. We found that (i) the rate of pavlovian conditioning to an appetitive reward develops as an inverse function of body weight; (ii) higher body weight associates with increased latency to collect food reward; and (iii) mice with lower body weights are more motivated to work for a food reward, as compared to animals with higher body weights. Interestingly, as compared to controls, overweight and obese mice consumed smaller amounts of palatable foods (isocaloric milk or sucrose, in either the presence or absence of their respective maintenance diets: standard, low fat-high carbohydrate or high fat-high carbohydrate). Notably, however, all groups adjusted their consumption of the different food types, such that their body weight-corrected daily intake of calories remained constant. Thus, overeating in mice does not reflect a reward deficiency syndrome and, in contrast to humans, mice regulate their caloric intake according to metabolic status rather than to the hedonic properties of a particular food. Together, these observations demonstrate that excess weight masks the capacity for appetitive learning in the mouse.
    Frontiers in Behavioral Neuroscience 10/2014; 8:377. DOI:10.3389/fnbeh.2014.00377 · 4.16 Impact Factor

Full-text (2 Sources)

Download
91 Downloads
Available from
May 28, 2014

Ramón Piñol