Article

Effects of compression depth and pre-shock pauses predict defibrillation failure during cardiac arrest

University of Chicago, Chicago, Illinois, United States
Resuscitation (Impact Factor: 3.96). 12/2006; 71(2):137-45. DOI: 10.1016/j.resuscitation.2006.04.008
Source: PubMed

ABSTRACT Cardiopulmonary resuscitation (CPR) and electrical defibrillation are the primary treatment options for ventricular fibrillation (VF). While recent studies have shown that providing CPR prior to defibrillation may improve outcomes, the effects of CPR quality remain unclear. Specifically, the clinical effects of compression depth and pauses in chest compression prior to defibrillation (pre-shock pauses) are unknown.
A prospective, multi-center, observational study of adult in-hospital and out-of-hospital cardiac resuscitations was conducted between March 2002 and December 2005. An investigational monitor/defibrillator equipped to measure compression characteristics during CPR was used.
Data were analyzed from 60 consecutive resuscitations in which a first shock was administered for VF. The primary outcome was first shock success defined as removal of VF for at least 5s following defibrillation. A logistic regression analysis demonstrated that successful defibrillation was associated with shorter pre-shock pauses (adjusted odds ratio 1.86 for every 5s decrease; 95% confidence interval 1.10-3.15) and higher mean compression depth during the 30s of CPR preceding the pre-shock pause (adjusted odds ratio 1.99 for every 5mm increase; 95% confidence interval 1.08-3.66).
The quality of CPR prior to defibrillation directly affects clinical outcomes. Specifically, longer pre-shock pauses and shallow chest compressions are associated with defibrillation failure. Strategies to correct these deficiencies should be developed and consideration should be made to replacing current-generation automated external defibrillators that require long pre-shock pauses for rhythm analysis.

Full-text

Available from: Jo Kramer-Johansen, Jun 03, 2015
0 Followers
 · 
199 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chest compression (CC) is a significant emergency medical procedure for maintaining circulation during cardiac arrest. Although CC produces the necessary blood flow for patients with heart arrest, improperly deep CC will contribute significantly to the risk of chest injury. In this paper, an optimal CC closed-loop controller for a mechanical chest compressor (OCC-MCC) was developed to provide an effective trade-off between the benefit of improved blood perfusion and the risk of ribs fracture. The trade-off performance of the OCC-MCC during real automatic mechanical CCs was evaluated by comparing the OCC-MCC and the traditional mechanical CC method (TMCM) with a human circulation hardware model based on hardware simulations. A benefit factor (BF), risk factor (RF) and benefit versus risk index (BRI) were introduced in this paper for the comprehensive evaluation of risk and benefit. The OCC-MCC was developed using the LabVIEW control platform and the mechanical chest compressor (MCC) controller. PID control is also employed by MCC for effective compression depth regulation. In addition, the physiological parameters model for MCC was built based on a digital signal processor for hardware simulations. A comparison between the OCC-MCC and TMCM was then performed based on the simulation test platform which is composed of the MCC, LabVIEW control platform, physiological parameters model for MCC and the manikin. Compared with the TMCM, the OCC-MCC obtained a better trade-off and a higher BRI in seven out of a total of nine cases. With a higher mean value of cardiac output (1.35 L/min) and partial pressure of end-tidal CO2 (15.7 mmHg), the OCC-MCC obtained a larger blood flow and higher BF than TMCM (5.19 vs. 3.41) in six out of a total of nine cases. Although it is relatively difficult to maintain a stable CC depth when the chest is stiff, the OCC-MCC is still superior to the TMCM for performing safe and effective CC during CPR. The OCC-MCC is superior to the TMCM in performing safe and effective CC during CPR and can be incorporated into the current version of mechanical CC devices for high quality CPR, in both in-hospital and out-of-hospital CPR settings.
    Medical & Biological Engineering & Computing 03/2015; 53(6). DOI:10.1007/s11517-015-1258-y · 1.50 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanical chest compressions have been proposed to provide high-quality cardiopulmonary resuscitation (CPR), but despite the growing use of mechanical chest compression devices, only few studies have addressed their impact on CPR quality. This study aims to evaluate mechanical chest compressions provided by LUCAS-2 (Lund University Cardiac Assist System) compared with manual chest compression in a cohort of out-of-hospital cardiac arrest (OHCA) cases. In this prospective study conducted in the Central Denmark Region, Denmark, the emergency medical service attempted resuscitation and reported data on 696 non-traumatic OHCA patients between April 2011 and February 2013. Of these, 155 were treated with LUCAS CPR after an episode with manual CPR. The CPR quality was evaluated using transthoracic impedance measurements collected from the LIFEPAK 12 defibrillator, and the effect was assessed in terms of chest compression rate, no-flow time and no-flow fraction; the fraction of time during resuscitation in which the patient is without spontaneous circulation receiving no chest compression. The median total episode duration was 21 minutes, and the episode with LUCAS CPR was significantly longer than the manual CPR episode, 13 minutes vs. 5 minutes, p < 0.001. The no-flow fraction was significantly lower during LUCAS CPR (16%) than during manual CPR (35%); difference 19% (95% CI: 16% to 21%; p < 0.001). No differences were found in pre- and post-shock no-flow time throughout manual CPR and LUCAS CPR. Contrary to the manual CPR, the average compression rate during LUCAS CPR was in conformity with the current Guidelines for Resuscitation, 102/minute vs. 124/minute, p < 0.001. Mechanical chest compressions provided by the LUCAS device improve CPR quality by significantly reducing the NFF and by improving the quality of chest compression compared with manual CPR during OHCA resuscitation. However, data on end-tidal Co2 and chest compression depth surrogate parameters of CPR quality could not be reported.
    Scandinavian Journal of Trauma Resuscitation and Emergency Medicine 04/2015; 23(1):37. DOI:10.1186/s13049-015-0114-2 · 1.93 Impact Factor
  • Resuscitation 12/2012; 83(12):1421-1422. DOI:10.1016/j.resuscitation.2012.09.016 · 3.96 Impact Factor