Sequence-specific binding of single-stranded RNA: is there a code for recognition?

Department of Biology, Institute for Molecular Biology and Biophysics, ETH Zürich, CH-8093 Zürich, Switzerland.
Nucleic Acids Research (Impact Factor: 8.81). 02/2006; 34(17):4943-59. DOI: 10.1093/nar/gkl620
Source: PubMed

ABSTRACT A code predicting the RNA sequence that will be bound by a certain protein based on its amino acid sequence or its structure would provide a useful tool for the design of RNA binders with desired sequence-specificity. Such de novo designed RNA binders could be of extraordinary use in both medical and basic research applications. Furthermore, a code could help to predict the cellular functions of RNA-binding proteins that have not yet been extensively studied. A comparative analysis of Pumilio homology domains, zinc-containing RNA binders, hnRNP K homology domains and RNA recognition motifs is performed in this review. Based on this, a set of binding rules is proposed that hints towards a code for RNA recognition by these domains. Furthermore, we discuss the intermolecular interactions that are important for RNA binding and summarize their importance in providing affinity and specificity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
    Advances in experimental medicine and biology 01/2014; 825:1-55. · 1.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ensuring the appropriate spatial-temporal control of protein abundance requires careful control of transcript levels. This process is regulated at many steps, including the rate at which transcripts decay. microRNAs (miRNAs) and RNA Binding Proteins (RBPs) represent two important regulators of transcript degradation. We review here recent literature that suggests these two regulators of transcript decay may functionally interact. Some studies have reported an excess of miRNA binding sites surrounding the positions at which RBPs bind. Experimental reports focusing on a particular transcript have identified instances in which RBPs and miRNAs compete for the same target sites, and instances in which the binding of a RBP makes a miRNA recognition site more accessible to the RISC complex. Further, miRNAs and RBPs use similar enzymes for degradation of target transcripts and the degradation of the target transcripts occurs in similar subcellular compartments. In addition to miRNA-RBP interactions involving transcript decay, RBPs have also been reported to facilitate the processing of pri-miRNAs to their final form. We summarize here several possible mechanisms through which miRNA-RBP interactions may occur.
    MicroRNA. 09/2012; 1(1):70-79.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract: Stress granule (SG) formation is a primary mechanism through which gene expression is rapidly modulated when the eukaryotic cell undergoes cellular stresses (including heat, oxidative, viral infection, starvation). In particular, the sequestration of specifically targeted translationally stalled mRNAs into SGs limits the expression of a subset of genes, but allows the expression of heatshock proteins that have a protective effect in the cell. The importance of SGs is seen in several disease states in which SG function is disrupted. Fundamental to SG formation are the T cell restricted intracellular antigen (TIA) proteins (TIA-1 and TIA-1 related protein (TIAR)), that both directly bind to target RNA and self-associate to seed the formation of SGs. Here a summary is provided of the current understanding of the way in which TIA proteins target specific mRNA, and how TIA self-association is triggered under conditions of cellular stress.
    International Journal of Molecular Sciences 12/2014; 15(12):23377-23388. · 2.46 Impact Factor

Full-text (3 Sources)

Available from
Aug 7, 2014