Subcortical visual dysfunction in schizophrenia drives secondary cortical impairments

Albert Einstein College of Medicine, New York, New York, United States
Brain (Impact Factor: 10.23). 03/2007; 130(Pt 2):417-30. DOI: 10.1093/brain/awl233
Source: PubMed

ABSTRACT Visual processing deficits are an integral component of schizophrenia and are sensitive predictors of schizophrenic decompensation in healthy adults. The primate visual system consists of discrete subcortical magnocellular and parvocellular pathways, which project preferentially to dorsal and ventral cortical streams. Subcortical systems show differential stimulus sensitivity, while cortical systems, in turn, can be differentiated using surface potential analysis. The present study examined contributions of subcortical dysfunction to cortical processing deficits using high-density event-related potentials. Event-related potentials were recorded to stimuli biased towards the magnocellular system using low-contrast isolated checks in Experiment 1 and towards the magnocellular or parvocellular system using low versus high spatial frequency (HSF) sinusoidal gratings, respectively, in Experiment 2. The sample consisted of 23 patients with schizophrenia or schizoaffective disorder and 19 non-psychiatric volunteers of similar age. In Experiment 1, a large decrease in the P1 component of the visual event-related potential in response to magnocellular-biased isolated check stimuli was seen in patients compared with controls (F = 13.2, P = 0.001). Patients also showed decreased slope of the contrast response function over the magnocellular-selective contrast range compared with controls (t = 9.2, P = 0.04) indicating decreased signal amplification. In Experiment 2, C1 (F = 8.5, P = 0.007), P1 (F = 33.1, P < 0.001) and N1 (F = 60.8, P < 0.001) were reduced in amplitude to magnocellular-biased low spatial frequency (LSF) stimuli in patients with schizophrenia, but were intact to parvocellular-biased HSF stimuli, regardless of generator location. Source waveforms derived from inverse dipole modelling showed reduced P1 in Experiment 1 and reduced C1, P1 and N1 to LSF stimuli in Experiment 2, consistent with surface waveforms. These results indicate pervasive magnocellular dysfunction at the subcortical level that leads to secondary impairment in activation of cortical visual structures within dorsal and ventral stream visual pathways. Our finding of early visual dysfunction is consistent with and explanatory of classic literature showing subjective complaints of visual distortions and is consistent with early visual processing deficits reported in schizophrenia. Although deficits in visual processing have frequently been construed as resulting from failures of top-down processing, the present findings argue strongly for bottom-up rather than top-down dysfunction at least within the early visual pathway. Deficits in magnocellular processing in this task may reflect more general impairments in neuronal systems functioning, such as deficits in non-linear amplification and may thus represent an organizing principle for predicting neurocognitive dysfunction in schizophrenia.

Download full-text


Available from: John J Foxe, Jun 30, 2015
1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia patients poorly perceive Kanizsa figures and integrate co-aligned contour elements (Gabors). They also poorly process low spatial frequencies (SFs), which presumably reflects dysfunction along the dorsal pathway. Can contour grouping deficits be explained in terms of the spatial frequency content of the display elements? To address the question, we tested patients and matched controls on three contour grouping paradigms in which the SF composition was modulated. In the Kanizsa task, subjects discriminated quartets of sectored circles (“pac-men”) that either formed or did not form Kanizsa shapes (illusory and fragmented conditions, respectively). In contour integration, subjects identified the screen quadrant thought to contain a closed chain of co-circular Gabors. In collinear facilitation, subjects attempted to detect a central low-contrast element flanked by collinear or orthogonal high-contrast elements, and facilitation corresponded to the amount by which collinear flankers reduced contrast thresholds. We varied SF by modifying the element features in the Kanizsa task and by scaling the entire stimulus display in the remaining tasks (SFs ranging from 4 to 12 cycles/deg). Irrespective of SF, patients were worse at discriminating illusory, but not fragmented shapes. Contrary to our hypothesis, collinear facilitation and contour integration were abnormal in the clinical group only for the higher SF (>=10 c/deg). Grouping performance correlated with clinical variables, such as conceptual disorganization, general symptoms, and levels of functioning. In schizophrenia, three forms of contour grouping impairments prominently arise and cannot be attributed to poor low SF processing. Neurobiological and clinical implications are discussed.
    Neuropsychologia 11/2014; 65. DOI:10.1016/j.neuropsychologia.2014.10.031 · 3.45 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A key feature of early visual cortical regions is that they contain discretely organized retinotopic maps. Titration of these maps must occur through experience, and the fidelity of their spatial tuning will depend on the consistency and accuracy of the eye movement system. Anomalies in fixation patterns and the ballistics of eye movements are well documented in autism spectrum disorder (ASD), with off-center fixations a hallmark of the phenotype. We hypothesized that these atypicalities might affect the development of visuo-spatial maps and specifically that peripheral inputs might receive altered processing in ASD. Using high-density recordings of visual evoked potentials (VEPs) and a novel system-identification approach known as VESPA (visual evoked spread spectrum analysis), we assessed sensory responses to centrally and peripherally presented stimuli. Additionally, input luminance was varied to bias responsiveness to the magnocellular system, given previous suggestions of magnocellular-specific deficits in ASD. Participants were 22 ASD children (7-17 years of age) and 31 age- and performance-IQ-matched neurotypical controls. Both VEP and VESPA responses to central presentations were indistinguishable between groups. In contrast, peripheral presentations resulted in significantly greater early VEP and VESPA amplitudes in the ASD cohort. We found no evidence that anomalous enhancement was restricted to magnocellular-biased responses. The extent of peripheral response enhancement was related to the severity of stereotyped behaviors and restricted interests, cardinal symptoms of ASD. The current results point to differential visuo-spatial cortical mapping in ASD, shedding light on the consequences of peculiarities in gaze and stereotyped visual behaviors often reported by clinicians working with this population.
    European Journal of Neuroscience 05/2013; DOI:10.1111/ejn.12243 · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The obvious symptoms of schizophrenia are of cognitive and psychopathological nature. However, schizophrenia affects also visual processing which becomes particularly evident when stimuli are presented for short durations and are followed by a masking stimulus. Visual deficits are of great interest because they might be related to the genetic variations underlying the disease (endophenotype concept). Visual masking deficits are usually attributed to specific dysfunctions of the visual system such as a hypo- or hyper-active magnocellular system. Here, we propose that visual deficits are a manifestation of a general deficit related to the enhancement of weak neural signals as occurring in all other sorts of information processing. We summarize previous findings with the shine-through masking paradigm where a shortly presented vernier target is followed by a masking grating. The mask deteriorates visual processing of schizophrenic patients by almost an order of magnitude compared to healthy controls. We propose that these deficits are caused by dysfunctions of attention and the cholinergic system leading to weak neural activity corresponding to the vernier. High density electrophysiological recordings (EEG) show that indeed neural activity is strongly reduced in schizophrenic patients which we attribute to the lack of vernier enhancement. When only the masking grating is presented, EEG responses are roughly comparable between patients and control. Our hypothesis is supported by findings relating visual masking to genetic deviants of the nicotinic α7 receptor (CHRNA7).
    Frontiers in Psychology 05/2013; 4:254. DOI:10.3389/fpsyg.2013.00254 · 2.80 Impact Factor