Article

Chronic toxicity of polycyclic aromatic compounds to the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus

Department of Animal Ecology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
Environmental Toxicology and Chemistry (Impact Factor: 2.83). 10/2006; 25(9):2423-31. DOI: 10.1897/05-628R.1
Source: PubMed

ABSTRACT An urgent need exists for incorporating heterocyclic compounds and (bio)transformation products in ecotoxicological test schemes and risk assessment of polycyclic aromatic compounds (PACs). The aim of the present study therefore was to determine the chronic effects of (heterocyclic) PACs on two terrestrial invertebrates, the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. The effects of 11 PACs were determined in chronic experiments using reproduction and survival as endpoints. The results demonstrated that as far as narcosis-induced mortality is concerned, effects of both homocyclic and heterocyclic PACs are well described by the relationship between estimated pore-water 50% lethal concentrations and log Kow. In contrast, specific effects on reproduction varied between species and between compounds as closely related as isomers, showing up as deviations from the relationship between pore-water 50% effect concentrations and log Kow. These unpredictable specific effects on reproduction force one to test the toxicity of these PACs to populations of soil invertebrates to obtain reliable effect concentrations for use in risk assessment of PACs.

Download full-text

Full-text

Available from: Michiel H. S. Kraak, Feb 03, 2014
0 Followers
 · 
168 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.2 standard soil for the isopod Porcellionides pruinosus and the springtail Folsomia candida. Toxicity tests were performed in the presence of CeO2 concentrations of 10, 100 or 1000mg Ce/kg dry soil and compared with results in the absence of CeO2 NPs. CeO2 NPs had no adverse effects on isopod survival and growth or springtail survival and reproduction. For the isopods, LC50s for the effect of phenanthrene ranged from 110 to 143mg/kg dry soil, and EC50s from 17.6 to 31.6mg/kg dry soil. For the springtails, LC50s ranged between 61.5 and 88.3mg/kg dry soil and EC50s from 52.2 to 76.7mg/kg dry soil. From this study it may be concluded that CeO2 NPs have a low toxicity and do not affect toxicity of phenanthrene to isopods and springtails. Copyright © 2014 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 12/2014; 113C:201-206. DOI:10.1016/j.ecoenv.2014.12.006 · 2.48 Impact Factor
  • Source
    Environmental Pollution 08/2013; 152:225-232. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the toxicity of soil samples derived from a former municipal landfill site in the South of the Netherlands, where a bioremediation project is running aiming at reusing the site for recreation. Both an organic soil extract and the original soil sample was investigated using the ISO standardized Folsomia soil ecotoxicological testing and gene expression analysis. The 28 day survival/reproduction test revealed that the ecologically more relevant original soil sample was more toxic than the organic soil extract. Microarray analysis showed that the more toxic soil samples induced gene regulatory changes in twice as less genes compared to the soil extract. Consequently gene regulatory changes were highly dependent on sample type, and were to a lesser extent caused by exposure level. An important biological process shared among the two sample types was the detoxification pathway for xenobiotics (biotransformation I, II, and III) suggesting a link between compound type and observed adverse effects. Finally, we were able to retrieve a selected group of genes that show highly significant dose-dependent gene expression and thus were tightly linked with adverse effects on reproduction. Expression of four cytochrome P450 genes showed highest correlation values with reproduction, and maybe promising genetic markers for soil quality. However, a more elaborate set of environmental soil samples is needed to validate the correlation between gene expression induction and adverse phenotypic effects.
    Frontiers in Genetics 05/2012; 3:85. DOI:10.3389/fgene.2012.00085