Chronic toxicity of polycyclic aromatic compounds to the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus.

Department of Animal Ecology, Institute of Ecological Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
Environmental Toxicology and Chemistry (Impact Factor: 2.62). 10/2006; 25(9):2423-31. DOI: 10.1897/05-628R.1
Source: PubMed

ABSTRACT An urgent need exists for incorporating heterocyclic compounds and (bio)transformation products in ecotoxicological test schemes and risk assessment of polycyclic aromatic compounds (PACs). The aim of the present study therefore was to determine the chronic effects of (heterocyclic) PACs on two terrestrial invertebrates, the springtail Folsomia candida and the enchytraeid Enchytraeus crypticus. The effects of 11 PACs were determined in chronic experiments using reproduction and survival as endpoints. The results demonstrated that as far as narcosis-induced mortality is concerned, effects of both homocyclic and heterocyclic PACs are well described by the relationship between estimated pore-water 50% lethal concentrations and log Kow. In contrast, specific effects on reproduction varied between species and between compounds as closely related as isomers, showing up as deviations from the relationship between pore-water 50% effect concentrations and log Kow. These unpredictable specific effects on reproduction force one to test the toxicity of these PACs to populations of soil invertebrates to obtain reliable effect concentrations for use in risk assessment of PACs.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Few toxicity data exist in the literature on the toxicity of chemicals to the predatory mite Hypoaspis aculeifer, but no information is available on its avoidance response. In order to assess the relevance of the avoidance behavior of H. aculeifer and the relative sensitivity of the mite in comparison with other invertebrates, avoidance and reproduction tests were conducted with seven chemicals using standardized guidelines. The chemicals (deltamethrin, chloropyrifos, dimethoate, copper, sodium chloride, phenanthrene and boric acid) were selected so as to cover varying chemical classes. For all three pesticides tested, avoidance response showed lower sensitivity than reproduction and survival (avoidance EC50 > reproduction EC50/LC50 values). However, for copper, sodium chloride and phenanthrene, the avoidance response showed similar sensitivity as reproduction (avoidance EC50 ≤ reproduction EC50 values) while for boric acid, similar sensitivity as survival (avoidance EC50 ≤ LC50 values). Although the mite H. aculeifer appears less sensitive to some of the chemicals tested than most other soil invertebrates, its status as the only predator among organisms for which standardized tests are available affirms its inclusion in routine ecotoxicity assessment. The results of the avoidance test with H. aculeifer suggest its potential usefulness as a rapid screening test for risk assessment purposes. Environ Toxicol Chem © 2013 SETAC.
    Environmental Toxicology and Chemistry 10/2013; · 2.62 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the 'omics revolution', the assessment of toxic chemical mixtures has incorporated approaches where phenotypic endpoints are connected to a mechanistic understanding of toxicity. In this study we determined the effect of binary mixtures of cadmium and phenanthrene on the reproduction of Folsomia candida and investigated the cellular mechanisms underlying this response. Mixture toxicity modeling showed an antagonistic deviation from concentration addition for reproduction effects of the mixtures. Subsequent transcriptional response analysis was done using five mixtures at the modeled 50 % effect level for reproduction. The transcription profiles of 86 high throughput RT-qPCR assays were studied by means of partial least squares regression analysis. The first and second principal components (PCs) were correlated with global responses to cadmium and phenanthrene, while correlations with the mixture treatments were found in the higher PCs. Specifically associated with the mixture treatments were a biotransformation phase II gene, four mitochondrial related genes and a gene involved in the biosynthesis of antioxidant selenoproteins. Membrane integrity related gene inductions were correlated with the single phenanthrene treatment but not with the mixtures. Immune and inflammatory response assays did not correlate with any of the mixtures. These results suggest moderated oxidative stress, a higher mitochondrial maintenance and less compromised membrane function in the mixture exposed samples compared to the separate cadmium or phenanthrene exposures. The antagonism found for inhibition of reproduction may partially originate from these differences. Mechanistic studies on mixture toxicity can ultimately aid risk assessment by defining relevant toxicity pathways in organisms exposed to real-world mixture exposures present in the field.
    Ecotoxicology 03/2013; · 2.77 Impact Factor
  • Source
    Environmental Pollution 08/2013; 152:225-232. · 3.73 Impact Factor


Available from
May 21, 2014