Tracking atrophy progression in familial Alzheimer's disease: a serial MRI study.

Dementia Research Centre, University College London, Institute of Neurology, London, UK.
The Lancet Neurology (Impact Factor: 21.82). 11/2006; 5(10):828-34. DOI: 10.1016/S1474-4422(06)70550-6
Source: PubMed

ABSTRACT Serial MRI scanning of autosomal dominant mutation carriers for Alzheimer's disease provides an opportunity to track changes that could predate symptoms or clinical diagnosis of the disease. We used hierarchical modelling to assess how hippocampal and whole-brain volumes change as familial Alzheimer's disease progresses from the presymptomatic stage through to diagnosis.
Nine mutation carriers had serial clinical assessments and volumetric MRI scans (41 scans: range 3-8 per patient) at different clinical stages (presymptomatic, mild cognitive impairment, or clinical Alzheimer's disease). 25 healthy controls had serial scanning (54 scans: range 2-4 per patient) for comparison. We measured whole brain and total hippocampal volumes using semi-automated techniques, and adjusted for total intracranial volume. Hierarchical models were developed to estimate differences in volume and atrophy rate between mutation carriers and controls in relation to when the disease was clinically diagnosed.
Mutation carriers had significantly increased hippocampal and whole-brain atrophy rates compared with controls and these differences increased with time. Differences in hippocampal and whole-brain atrophy rates between controls and mutation carriers were evident 5.5 and 3.5 years, respectively, before diagnosis of Alzheimer's disease. At a cross-sectional level, differences in mean hippocampal volume between mutation carriers and controls became significant 3 years before clinical diagnosis, whereas differences in mean brain volumes became significant only 1 year before diagnosis.
Structural changes can be seen on MRI scans that predate the clinical onset of familial Alzheimer's disease. Longitudinal measures of atrophy rates can identify differences between mutation carriers and controls 2-3 years earlier than cross-sectional volumetric measures.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: An international Delphi panel has defined a harmonized protocol (HarP) for the manual segmentation of the hippocampus on MR. The aim of this study is to study the concurrent validity of the HarP toward local protocols, and its major sources of variance. METHODS: Fourteen tracers segmented 10 Alzheimer's Disease Neuroimaging Initiative (ADNI) cases scanned at 1.5 T and 3T following local protocols, qualified for segmentation based on the HarP through a standard web-platform and resegmented following the HarP. The five most accurate tracers followed the HarP to segment 15 ADNI cases acquired at three time points on both 1.5 T and 3T. RESULTS: The agreement among tracers was relatively low with the local protocols (absolute left/right ICC 0.44/0.43) and much higher with the HarP (absolute left/right ICC 0.88/0.89). On the larger set of 15 cases, the HarP agreement within (left/right ICC range: 0.94/0.95 to 0.99/0.99) and among tracers (left/right ICC range: 0.89/0.90) was very high. The volume variance due to different tracers was 0.9% of the total, comparing favorably to variance due to scanner manufacturer (1.2), atrophy rates (3.5), hemispheric asymmetry (3.7), field strength (4.4), and significantly smaller than the variance due to atrophy (33.5%, P < .001), and physiological variability (49.2%, P < .001). CONCLUSIONS: The HarP has high measurement stability compared with local segmentation protocols, and good reproducibility within and among human tracers. Hippocampi segmented with the HarP can be used as a reference for the qualification of human tracers and automated segmentation algorithms.
    Alzheimer's and Dementia 09/2014; DOI:10.1016/j.jalz.2014.05.1756 · 17.47 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: This review aimed to produce hippocampal atrophy rate estimates from healthy ageing studies as well as control samples from observational studies across the adult lifespan which can be used as benchmarks to evaluate abnormal changes in pathological conditions. The review followed PRISMA guidelines. PUBMED (to February 2014) was searched for longitudinal MRI studies reporting hippocampal atrophy or volume change in cognitively healthy individuals. Titles were screened and non-English, duplicate or irrelevant entries excluded. Remaining record abstracts were reviewed to identify studies for full text retrieval. Full text was retrieved and screened against inclusion/exclusion criteria. Bibliographies and previous reviews were examined to identify additional studies. Data were summarised using meta-analysis and age, segmentation technique and study type were tested as potential moderators using meta-regression. It was hypothesised that population studies would produce higher atrophy rates than clinical observational studies. The systematic search identified 4410 entries and 119 studies were retrieved with 58 failing selection or quality criteria, 30 excluded as multiple reports and 3 studies were unsuitable for meta-analysis. The remaining 28 studies were included in the meta-analysis, n = 3422, 44.65% male, 11735 person-years of follow-up, mean age was 24.50 to 83 years. Mean total hippocampal atrophy for the entire sample was 0.85% per year (95% CI 0.63, 1.07). Age based atrophy rates were 0.38% per year (CI 0.14, 0.62) for studies with mean age < 55 years (n=413), 0.98% (CI 0.27, 1.70) for 55 to < 70 years (n=426), and 1.12% (CI 0.86, 1.38) for >= 70 years (n=2583). Meta-regression indicated age was associated with increased atrophy rates of 0.0263% (CI 0.0146, 0.0379) per year and automated segmentation approaches were associated with a reduced atrophy rate of -0.466% (CI -0.841,-0.090). Population studies were not associated with a significant effect on atrophy. Analyses of 11 studies separately measuring left and right hippocampal atrophy (n=1142) provided little evidence of laterality effects. While no study separately reported atrophy by gender, a number tested for gender effects and 2 studies reported higher atrophy in males. Hippocampal atrophy rates increase with age with the largest increases occurring from midlife onwards. Manual segmentation approaches result in higher measured atrophy rates. Copyright © 2015 Elsevier Inc. All rights reserved.
    NeuroImage 03/2015; DOI:10.1016/j.neuroimage.2015.03.035 · 6.13 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of red blood cell acetyl cholinesterase (AChE) in a familial Alzheimer's diseases (AD) Parkinson's disease dementia (PDD) and their first generation. General hospital, Mahad district, Raigad. Clinically diagnosed patients of AD and PDD and their asymptomatic relatives. Their blood was collected in EDTA tube and transferred to laboratory at Mumbai. Median red blood cell (RBC) cholinesterase levels amongst PDD, their first generation asymptomatic relatives, familial AD, asymptomatic relatives of AD, healthy controls, farmers exposed to pesticides (positive control) and other neurological condition without dementia (hypertension with TIA 1, sub-dural hematoma 2, hypothyroid 1, non-familial unilateral parkinsonism without dementia 3, writers cramps 2, hyponitremia 1 and cerebral palsy with non-fluent aphasia 1). Median values of RBC AChE were 19086.78 U/L, 15666.05 U/L, 9013.11 U/L, 7806.19 U/L, 14334.57 U/L, 9785.05 U/L and 13162.60 U/L, respectively. As compared to controls, RBC AChE levels were statistically significant among PDD (P = 0.004) and significantly lowered among familial AD patients (P = 0.010), relatives of patients (P = 0.010). Below the normal RBC AChE level is a potential biomarker in asymptomatic relatives of familial AD patients. RBC AChE is raised than normal level in patients suffering from PDD, where AChE inhibitors are helpful. However, RBC AChE level below the normal where AChE inhibitor may not be effective.
    01/2015; 6(1):33-8. DOI:10.4103/0976-3147.143187