Article

Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci.

Department of Genetics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
Theoretical and Applied Genetics (Impact Factor: 3.51). 12/2006; 113(8):1551-61. DOI: 10.1007/s00122-006-0402-3
Source: PubMed

ABSTRACT A new large set of reciprocal recombinant inbred lines (RILs) was created between the Arabidopsis accessions Col-0 and C24 for quantitative trait mapping approaches, consisting of 209 Col-0 x C24 and 214 C24 x Col-0 F(7 )RI lines. Genotyping was performed using 110 evenly distributed framework single nucleotide polymorphism markers, yielding a genetic map of 425.70 cM, with an average interval of 3.87 cM. Segregation distortion (SD) was observed in several genomic regions during the construction of the genetic map. Linkage disequilibrium analysis revealed an association between a distorted region at the bottom of chromosome V and a non-distorted region on chromosome IV. A detailed analysis of the RILs for these two regions showed that an SD occurred when homozygous Col-0 alleles on chromosome IV coincided with homozygous C24 alleles at the bottom of chromosome V. Using nearly isogenic lines segregating for the distorted region we confirmed that this genotypic composition leads to reduced fertility and fitness.

Download full-text

Full-text

Available from: Carsten Rautengarten, Jun 05, 2015
0 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-genome duplication resulting from polyploidy is ubiquitous in the evolutionary history of plant species. Yet, polyploids must overcome the meiotic challenge of pairing, recombining, and segregating more than two sets of chromosomes. Using genomic sequencing of synthetic and natural allopolyploids of Arabidopsis thaliana and Arabidopsis arenosa, we determined that dosage variation and chromosomal translocations consistent with homoeologous pairing were more frequent in the synthetic allopolyploids. To test the role of structural chromosomal differentiation versus genetic regulation of meiotic pairing, we performed sequenced-based, high-density genetic mapping in F2 hybrids between synthetic and natural lines. This F2 population displayed frequent dosage variation and deleterious homoeologous recombination. The genetic map derived from this population provided no indication of structural evolution of the genome of the natural allopolyploid Arabidopsis suecica, compared with its predicted parents. The F2 population displayed variation in meiotic regularity and pollen viability that correlated with a single quantitative trait locus, which we named BOY NAMED SUE, and whose beneficial allele was contributed by A. suecica. This demonstrates that an additive, gain-of-function allele contributes to meiotic stability and fertility in a recently established allopolyploid and provides an Arabidopsis system to decipher evolutionary and molecular mechanisms of meiotic regularity in polyploids.
    The Plant Cell 01/2014; 26(1). DOI:10.1105/tpc.113.120626 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most natural Arabidopsis thaliana accessions are susceptible to one or more isolates of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa). However, Arabidopsis C24 has proved resistant to all Hpa isolates tested so far. Here we describe the complex genetic basis of broad-spectrum resistance in C24. The genetics of C24 resistance to three Hpa isolates was analyzed by segregation analysis and quantitative trait locus (QTL) mapping on recombinant inbred and introgression lines. Resistance of C24 to downy mildew was found to be a multigenic trait with complex inheritance. Many identified resistance loci were isolate-specific and located on different chromosomes. Among the C24 resistance QTLs, we found dominant, codominant and recessive loci. Interestingly, none of the identified loci significantly contributed to resistance against all three tested Hpa isolates. Our study demonstrates that broad-spectrum resistance of Arabidopsis C24 to Hpa is based on different combinations of multiple isolate-specific loci. The identified quantitative resistance loci are particularly promising as they provide an important basis for the cloning of susceptibility- and immunity-related genes.
    New Phytologist 10/2012; DOI:10.1111/j.1469-8137.2012.04344.x · 6.55 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na(+) in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na(+) accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na(+) exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up-regulated under salt stress. Greater Na(+) exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the gene's promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na(+) and greater salinity tolerance. amiRNA knock-downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na(+) . Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.
    Plant Cell and Environment 08/2012; 36(3). DOI:10.1111/j.1365-3040.2012.02595.x · 5.91 Impact Factor