Törjék O, Witucka-Wall H, Meyer RC, Korff M, Kusterer B, Rautengarten C et al.. Segregation distortion in Arabidopsis C24/Col-0 and Col-0/C24 recombinant inbred line populations is due to reduced fertility caused by epistatic interaction of two loci. Theor Appl Genet 113: 1551-1561

Department of Genetics, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany.
Theoretical and Applied Genetics (Impact Factor: 3.79). 12/2006; 113(8):1551-61. DOI: 10.1007/s00122-006-0402-3
Source: PubMed


A new large set of reciprocal recombinant inbred lines (RILs) was created between the Arabidopsis accessions Col-0 and C24 for quantitative trait mapping approaches, consisting of 209 Col-0 x C24 and 214 C24 x Col-0 F(7 )RI lines. Genotyping was performed using 110 evenly distributed framework single nucleotide polymorphism markers, yielding a genetic map of 425.70 cM, with an average interval of 3.87 cM. Segregation distortion (SD) was observed in several genomic regions during the construction of the genetic map. Linkage disequilibrium analysis revealed an association between a distorted region at the bottom of chromosome V and a non-distorted region on chromosome IV. A detailed analysis of the RILs for these two regions showed that an SD occurred when homozygous Col-0 alleles on chromosome IV coincided with homozygous C24 alleles at the bottom of chromosome V. Using nearly isogenic lines segregating for the distorted region we confirmed that this genotypic composition leads to reduced fertility and fitness.

Download full-text


Available from: Carsten Rautengarten, Jun 05, 2015
17 Reads
  • Source
    • "Segregation distortion is a common fact in segregated populations generated from crosses between diverse genotypes [64,65]. In plants, segregation distortion was first reported in maize [66], and subsequently in many species including rice [67], wheat [68], Arabidopsis [69], and cabbage [14]. Segregation distortion can have important implications for the construction of a genetic map and QTL mapping, but if addressed properly, distorted markers can also be helpful for QTL mapping [70]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Expressed sequence tag (EST)-based markers are preferred because they reflect transcribed portions of the genome. We report the development of simple sequence repeat (SSR) and single nucleotide polymorphism (SNP) markers derived from transcriptome sequences in cabbage, and their utility for map construction. Transcriptome sequences were obtained from two cabbage parental lines, C1184 and C1234, which are susceptible and resistant to black rot disease, respectively, using the 454 platform. A total of 92,255 and 127,522 reads were generated and clustered into 34,688 and 40,947 unigenes, respectively. We identified 2,405 SSR motifs from the unigenes of the black rot-resistant parent C1234. Trinucleotide motifs were the most abundant (66.15%) among the repeat motifs. In addition, 1,167 SNPs were detected between the two parental lines. A total of 937 EST-based SSR and 97 SNP-based dCAPS markers were designed and used for detection of polymorphism between parents. Using an F2 population, we built a genetic map comprising 265 loci, and consisting of 98 EST-based SSRs, 21 SNP-based dCAPS, 55 IBP markers derived from B. rapa genome sequence and 91 public SSRs, distributed on nine linkage groups spanning a total of 1,331.88 cM with an average distance of 5.03 cM between adjacent loci. The parental lines used in this study are elite breeding lines with little genetic diversity; therefore, the markers that mapped in our genetic map will have broad spectrum utility. This genetic map provides additional genetic information to the existing B. oleracea map. Moreover, the new set of EST-based SSR and dCAPS markers developed herein is a valuable resource for genetic studies and will facilitate cabbage breeding. Additionally, this study demonstrates the usefulness of NGS transcriptomes for the development of genetic maps even with little genetic diversity in the mapping population.
    BMC Genomics 02/2014; 15(1):149. DOI:10.1186/1471-2164-15-149 · 3.99 Impact Factor
  • Source
    • "and do not indicate substantial two - locus linkage disequilibrium as has been previously described in the progeny from some A . thaliana crosses ( Törjék et al . , 2006 ; Simon et al . , 2008 ) . QTL detection was performed using the R / qtl package ( Broman et al . , 2003"
    [Show abstract] [Hide abstract]
    ABSTRACT: Whole-genome duplication resulting from polyploidy is ubiquitous in the evolutionary history of plant species. Yet, polyploids must overcome the meiotic challenge of pairing, recombining, and segregating more than two sets of chromosomes. Using genomic sequencing of synthetic and natural allopolyploids of Arabidopsis thaliana and Arabidopsis arenosa, we determined that dosage variation and chromosomal translocations consistent with homoeologous pairing were more frequent in the synthetic allopolyploids. To test the role of structural chromosomal differentiation versus genetic regulation of meiotic pairing, we performed sequenced-based, high-density genetic mapping in F2 hybrids between synthetic and natural lines. This F2 population displayed frequent dosage variation and deleterious homoeologous recombination. The genetic map derived from this population provided no indication of structural evolution of the genome of the natural allopolyploid Arabidopsis suecica, compared with its predicted parents. The F2 population displayed variation in meiotic regularity and pollen viability that correlated with a single quantitative trait locus, which we named BOY NAMED SUE, and whose beneficial allele was contributed by A. suecica. This demonstrates that an additive, gain-of-function allele contributes to meiotic stability and fertility in a recently established allopolyploid and provides an Arabidopsis system to decipher evolutionary and molecular mechanisms of meiotic regularity in polyploids.
    The Plant Cell 01/2014; 26(1). DOI:10.1105/tpc.113.120626 · 9.34 Impact Factor
  • Source
    • "Lyttle (1991) believed that the distortion is an important evolutionary force. Törjék et al. (2006) indicated that the distortion is due to reduced fertility caused by epistatic interaction of two loci. McMullen et al. (2009) investigated genome-wide segregation distortions across and among nested association mapping families. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Marker segregation distortion is a common natural phenomenon. However, relatively little is known about utilizing distorted markers for detecting quantitative trait loci (QTL). Therefore, in this study we proposed a multi-QTL mapping approach that uses distorted markers. First, the information from all markers, including distorted markers, was used to detect segregation distortion loci (SDL). Second, the information from the detected SDL was used to correct the conditional probabilities of the QTL genotypes conditional on marker information, and these corrected probabilities were then incorporated into a multi-QTL mapping methodology. Finally, the proposed approach was validated by both Monte Carlo simulation studies and real data analysis. The results from the simulation studies show that as long as one or two SDL are placed around the simulated QTL, there are no differences between the new method and the ordinary interval mapping method in terms of the power of QTL detection or the estimates of the position and dominant effects of the QTL. However, the power of QTL detection is higher under the dominant genetic model of SDL than under the additive genetic model, and the estimate for the additive effect of QTL using the new method is significantly different from the estimate obtained using ordinary interval mapping. The above results were further confirmed by the detection of QTL for dried soymilk in 222 F2:4 families in soybean.
    Molecular Breeding 02/2013; 3(12):395-404. DOI:10.1007/s11032-012-9797-5 · 2.25 Impact Factor
Show more