DYX1C1 functions in neuronal migration in developing neocortex.

Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06268, USA.
Neuroscience (Impact Factor: 3.12). 01/2007; 143(2):515-22. DOI: 10.1016/j.neuroscience.2006.08.022
Source: PubMed

ABSTRACT Rodent homologues of two candidate dyslexia susceptibility genes, Kiaa0319 and Dcdc2, have been shown to play roles in neuronal migration in developing cerebral neocortex. This functional role is consistent with the hypothesis that dyslexia susceptibility is increased by interference with normal neural development. In this study we report that in utero RNA interference against the rat homolog of another candidate dyslexia susceptibility gene, DYX1C1, disrupts neuronal migration in developing neocortex. The disruption of migration can be rescued by concurrent overexpression of DYX1C1, indicating that the impairment is not due to off-target effects. Transfection of C- and N-terminal truncations of DYX1C1 shows that the C-terminal TPR domains determine DYX1C1 intracellular localization to cytoplasm and nucleus. RNAi rescue experiments using truncated versions of DYX1C1 further indicate that the C-terminus of DYX1C1 is necessary and sufficient to DYX1C1's function in migration. In conclusion, DYX1C1, similar to two other candidate dyslexia susceptibility genes, functions in neuronal migration in rat neocortex.

1 Bookmark
  • [Show abstract] [Hide abstract]
    ABSTRACT: The neurodegenerative aspect of schizophrenia presupposes gene-environmental interactions involving chromosomal abnormalities and obstetric/perinatal complications that culminate in predispositions that impart a particular vulnerability for drastic and unpredictable precipitating factors, such as stress or chemical agents. The notion of a neurodevelopmental progression to the disease state implies that early developmental insults, with neurodegenerative proclivities, evolve into structural brain abnormalities involving specific regional circuits and neurohumoral agents. This neurophysiological orchestration is expressed in the dysfunctionality observed in premorbid signs and symptoms arising in the eventual diagnosis, as well as the neurobehavioral deficits reported from animal models of the disorder. The relative contributions of perinatal insults, neonatal ventral hippocampus lesion, prenatal methylazoxymethanol acetate and early traumatic experience, as well as epigenetic contributions, are discussed from a neurodegenerative view of the essential neuropathology. It is implied that these considerations of factors that exert disruptive influences upon brain development, or normal aging, operationalize the central hub of developmental neuropathology around which the disease process may gain momentum. Nonetheless, the status of neurodegeneration in schizophrenia is somewhat tenuous and it is possible that brain imaging studies on animal models of the disorder, which may describe progressive alterations to cortical, limbic and ventricular structures similar to those of schizophrenic patients, are necessary to resolve the issue.
    Expert Review of Neurotherapeutics 07/2010; 10(7):1131-41. · 2.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: The dyslexia susceptibility 1 candidate 1 (DYX1C1) gene has recently been associated with dyslexia and reading scores in several population samples. The DYX1C1 has also been shown to affect neuronal migration and modulate estrogen receptor signaling. METHODS: We have analyzed the molecular networks of DYX1C1 by gene expression and protein interaction profiling in a human neuroblastoma cell line. RESULTS: We find that DYX1C1 can modulate the expression of nervous system development and neuronal migration genes such as RELN and associate with a number of cytoskeletal proteins. We also show by live cell imaging that DYX1C1 regulates cell migration of the human neuroblastoma cell line dependent on its tetratricopeptide repeat and DYX1 protein domains. The DYX1 domain is a novel highly conserved domain identified in this study by multiple sequence alignment of DYX1C1 proteins recovered from a wide range of eukaryotic species. CONCLUSIONS: Our results contribute to the hypothesis that dyslexia has a developmental neurobiological basis by linking DYX1C1 with many genes involved in neuronal migration disorders.
    Biological psychiatry 10/2012; · 8.93 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dyslexia is a common pediatric disorder that affects 5-17% of schoolchildren in the United States. It is marked by unexpected difficulties in fluent reading despite adequate intelligence, opportunity, and instruction. Classically, neuropsychologists have studied dyslexia using a variety of neurocognitive batteries to gain insight into the specific deficits and impairments in affected children. Since dyslexia is a complex genetic trait with high heritability, analyses conditioned on performance on these neurocognitive batteries have been used to try to identify associated genes. This has led to some successes in identifying contributing genes, although much of the heritability remains unexplained. Additionally, the lack of relevant human brain tissue for analysis and the challenges of modeling a uniquely human trait in animals are barriers to advancing our knowledge of the underlying pathophysiology. In vivo imaging technologies, however, present new opportunities to examine dyslexia and reading skills in a clearly relevant context in human subjects. Recent investigations have started to integrate these imaging data with genetic data in attempts to gain a more complete and complex understanding of reading processes. In addition to bridging the gap from genetic risk variant to a discernible neuroimaging phenotype and ultimately to the clinical impairments in reading performance, the use of neuroimaging phenotypes will reveal novel risk genes and variants. In this article, we briefly discuss the genetic and imaging investigations and take an in-depth look at the recent imaging-genetics investigations of dyslexia.
    Molecular Genetics and Metabolism 07/2013; · 2.83 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014