Article

Preclinical research into cognition enhancers.

Department of Psychology, University of Michigan, 4032 East Hall, 530 Church Street, Ann Arbor, MI 48109-1043, USA.
Trends in Pharmacological Sciences (Impact Factor: 9.99). 12/2006; 27(11):602-8. DOI: 10.1016/j.tips.2006.09.004
Source: PubMed

ABSTRACT The preclinical development of drugs to treat the cognitive symptoms of neuropsychiatric and neurological disorders is a formidable challenge. Evidence from a wide range of preclinical behavioral and neuropharmacological tests has formed the basis for predicting drug-induced cognition enhancement in normal volunteers and in patients with cognitive impairments. However, the limited validity of preclinical predictions of this enhancement in humans indicates that conventional screening for "broadly active" compounds represents a below-optimal research strategy. This article conceptualizes the evidence needed to improve the predictive validity of preclinical research designed to discover and characterize cognition enhancers. We suggest that the investigation of reciprocal relationships among molecular, cellular, behavioral and cognitive processes modulated by candidate drugs represents the core of such research. By contrast, the usefulness of simple and high-throughput screening tests for the detection of cognition enhancers might be restricted to advanced drug-finding programs that are guided by evidence of the modulation of neurocognitive relationships by cognition enhancers and that are informed by iterative preclinical-clinical cross-validation of research approaches. We stress the need for basic biopsychological research approaches in preclinical programs to find and characterize drugs to treat cognitive disorders.

1 Follower
 · 
67 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Research on the regulation and function of ascending noradrenergic, dopaminergic, serotonergic, and cholinergic systems has focused on the organization and function of individual systems. In contrast, evidence describing co-activation and interactions between multiple neuromodulatory systems has remained scarce. However, commonalities in the anatomical organization of these systems and overlapping evidence concerning the post-synaptic effects of neuromodulators strongly suggest that these systems are recruited in concert; they influence each other and simultaneously modulate their target circuits. Therefore, evidence on the regulatory and functional interactions between these systems is considered essential for revealing the role of neuromodulators. This postulate extends to contemporary neurobiological hypotheses of major neuropsychiatric disorders. These hypotheses have focused largely on aberrations in the integrity or regulation of individual ascending modulatory systems, with little regard for the likely possibility that dysregulation in multiple ascending neuromodulatory systems and their interactions contribute essentially to the symptoms of these disorders. This review will paradigmatically focus on neuromodulator interactions in the PFC and be further constrained by an additional focus on their role in cognitive functions. Recent evidence indicates that individual neuromodulators, in addition to their general state-setting or gating functions, encode specific cognitive operations, further substantiating the importance of research concerning the parallel recruitment of neuromodulator systems and interactions between these systems.
    Progress in Neurobiology 11/2007; 83(2):69-91. DOI:10.1016/j.pneurobio.2007.06.007 · 10.30 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abnormalities in the regulation of neurotransmitter release and/or abnormal levels of extracellular neurotransmitter concentrations have remained core components of hypotheses on the neuronal foundations of behavioral and cognitive disorders and the symptoms of neuropsychiatric and neurodegenerative disorders. Furthermore, therapeutic drugs for the treatment of these disorders have been developed and categorized largely on the basis of their effects on neurotransmitter release and resulting receptor stimulation. This perspective stresses the theoretical and practical implications of hypotheses that address the dynamic nature of neurotransmitter dysregulation, including the multiple feedback mechanisms regulating synaptic processes, phasic and tonic components of neurotransmission, compartmentalized release, differentiation between dysregulation of basal vs activated release, and abnormal release from neuronal systems recruited by behavioral and cognitive activity. Several examples illustrate that the nature of the neurotransmitter dysregulation in animal models, including the direction of drug effects on neurotransmitter release, depends fundamentally on the state of activity of the neurotransmitter system of interest and on the behavioral and cognitive functions recruiting these systems. Evidence from evolving techniques for the measurement of neurotransmitter release at high spatial and temporal resolution is likely to advance hypotheses describing the pivotal role of neurotransmitter dysfunction in the development of essential symptoms of major neuropsychiatric disorders, and also to refine neuropharmacological mechanisms to serve as targets for new treatment approaches. The significance and usefulness of hypotheses concerning the abnormal regulation of the release of extracellular concentrations of primary messengers depend on the effective integration of emerging concepts describing the dynamic, compartmentalized, and activity-dependent characteristics of dysregulated neurotransmitter systems.
    Neuropsychopharmacology 08/2007; 32(7):1452-61. DOI:10.1038/sj.npp.1301285 · 7.83 Impact Factor
  • Source