Article

Assigning solid-state NMR spectra of aligned proteins using isotropic chemical shifts.

Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, 0307 La Jolla, CA 92093-0307, USA.
Journal of Magnetic Resonance (Impact Factor: 2.3). 01/2007; 183(2):329-32. DOI: 10.1016/j.jmr.2006.08.016
Source: PubMed

ABSTRACT A method for assigning solid-state NMR spectra of membrane proteins aligned in phospholipid bicelles that makes use of isotropic chemical shift frequencies and assignments is demonstrated. The resonance assignments are based on comparisons of 15N chemical shift differences in spectra obtained from samples with their bilayer normals aligned perpendicular and parallel to the direction of the applied magnetic field.

0 Bookmarks
 · 
66 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Members of the cytochrome P450 (cyt P450) superfamily of enzymes oxidize a wide array of endogenous and xenobiotic substances to prepare them for excretion. Most of the drugs in use today are metabolized in part by a small set of human cyt P450 isozymes. Consequently, cyt P450s have for a long time received a lot of attention in biochemical and pharmacological research. Cytochrome P450 receives electrons from cytochrome P450 reductase and in selected cases from cytochrome b5 (cyt b5). Numerous structural studies of cyt P450s, cyt b5, and their reductases have given considerable insight into fundamental structure-function relationships. However, structural studies so far have had to rely on truncated variants of the enzymes to make conventional X-ray crystallographic and solution-state NMR techniques applicable. In spite of significant efforts it has not yet been possible to crystallize any of these proteins in their full-length membrane bound forms. The truncated parts of the enzymes are assumed to be alpha-helical membrane anchors that are essential for some key properties of cyt P450s. In the present contribution we set out with a basic overview on the current status of functional and structural studies. Our main aim is to demonstrate how advanced modern solid-state NMR spectroscopic techniques will be able to make substantial progress in cyt P450 research. Solid-state NMR spectroscopy has sufficiently matured over the last decade to be fully applicable to any membrane protein system. Recent years have seen a remarkable increase in studies on membrane protein structure using a host of solid-state NMR techniques. Solid-state NMR is the only technique available today for structural studies on full-length cyt P450 and full-length cyt b5. We aim to give a detailed account of modern techniques as applicable to cyt P450 and cyt b5, to show what has already been possible and what seems to be viable in the very near future.
    Biochimica et Biophysica Acta 01/2008; 1768(12):3235-59. · 4.66 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many biological membranes consist of 50% or more (by weight) membrane proteins, which constitute approximately one-third of all proteins expressed in biological organisms. Helical membrane proteins function as receptors, enzymes, and transporters, among other unique cellular roles. Additionally, most drugs have membrane proteins as their receptors, notably the superfamily of G protein-coupled receptors with seven transmembrane helices. Determining the structures of membrane proteins is a daunting task because of the effects of the membrane environment; specifically, it has been difficult to combine biologically compatible environments with the requirements for the established methods of structure determination. There is strong motivation to determine the structures in their native phospholipid bilayer environment so that perturbations from nonnatural lipids and phases do not have to be taken into account. At present, the only method that can work with proteins in liquid crystalline phospholipid bilayers is solid-state NMR spectroscopy. Expected final online publication date for the Annual Review of Analytical Chemistry Volume 6 is June 15, 2013. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.
    Annual Review of Analytical Chemistry (2008) 04/2013; · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NMR spectroscopy enables the structures of membrane proteins to be determined in the native-like environment of the phospholipid bilayer membrane. This chapter outlines the methods for membrane protein structural studies using solid-state NMR spectroscopy with samples of membrane proteins incorporated in proteoliposomes or planar lipid bilayers. The methods for protein expression and purification, sample preparation, and NMR experiments are described and illustrated with examples from OmpX and Ail, two bacterial outer membrane proteins that function in bacterial virulence.
    Methods in molecular biology (Clifton, N.J.) 01/2013; 1063:145-58. · 1.29 Impact Factor

Anna De Angelis