Article

Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of Smac/DIABLO from the mitochondria.

Ist Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
Pathology & Oncology Research (Impact Factor: 1.56). 02/2006; 12(3):133-42. DOI: 10.1007/BF02893359
Source: PubMed

ABSTRACT The synergistic interaction between proteasome inhibitors and tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a promising approach to induce cell death in tumor cells. However, the molecular and biochemical mechanisms of this synergism have been proven to be cell type specific. We therefore focused our investigation on TRAIL-resistant colon carcinoma cells in this study. DNA fragmentation, mitochondrial membrane depolarization and increased caspase-3-like enzyme activity was exclusively induced only by combined treatment with proteasome inhibitors (epoxomicin, MG132, bortezomib/PS-341) and TRAIL. The expression level of anti-apoptotic proteins (XIAP, survivin, Bcl-2, Bcl-XL), regulated by NF-kappaB transcription factor, was not effected by any of these treatments. TRAIL alone induced only partial activation of caspase-3 (p20), while the combination of TRAIL and proteasome inhibition led to the full proteolytic activation of caspase-3 (p17). Only the combination treatment induced marked membrane depolarization and the release of cytochrome c, HtrA2/Omi and Smac/DIABLO. Apoptosis-inducing factor (AIF) was not released in any of these conditions. These results are consistent with a model where the full activation of caspase-3 by caspase-8 is dependent on the release of Smac/DIABLO in response to the combined treatment. This molecular mechanism, independent of the inhibition NF-kappaB activity, may provide rationale for the combination treatment of colon carcinomas with proteasome inhibitors and recombinant TRAIL or agonistic antibody of TRAIL receptors.

0 Bookmarks
 · 
71 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: DJ-1, a cancer-associated protein protects cells from multiple toxic stresses. The expression of DJ-1 and its influence on thyroid cancer cell death has not been investigated so far. We analyzed DJ-1 expression in human thyroid carcinoma cell lines and the effect of DJ-1 on tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. DJ-1 was expressed in human thyroid carcinoma cell lines; small interfering RNA-mediated downregulation of its levels significantly sensitized thyroid carcinoma cells to TRAIL-induced apoptosis, whereas the forced exogenous expression of DJ-1 significantly suppressed cell death induced by TRAIL. We also report here that TRAIL-induced thyroid cancer cell apoptosis is mediated by oxidative stress and that DJ-1, a potent nutritional antioxidant, protects cancer cells from apoptosis at least in part by impeding the elevation of reactive oxygen species levels induced by TRAIL and impairing caspase-8 activation. Subsequently, we investigated DJ-1 expression in 52 normal and 74 primary thyroid carcinomas from patients of China Medical University. The protein was not detectable in the 52 specimens of normal thyroid, while 70 out of 74 analyzed carcinomas (33 out of 33 follicular, 17 out of 19 papillary, 12 out of 13 medullar, and 8 out of 9 anaplastic) were clearly positive for DJ-1 expression. Our data demonstrated that DJ-1 is specifically expressed in thyroid carcinomas and not in the normal thyroid tissue. In addition, the protein modulates the response to TRAIL-mediated apoptosis in human neoplastic thyroid cells, at least partially through its antioxidant property.
    Endocrine Related Cancer 07/2008; 15(2):535-44. · 5.26 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to modulate balance between cell survival and death is recognized for its great therapeutic potential. Therefore, research continues to focus on elucidation of cell machinery and signaling pathways that control cell proliferation and apoptosis. Conventional chemotherapeutic agents often have a cytostatic effect over tumor cells. New natural or synthetic chemotherapeutic agents have a wider spectrum of interesting antitumor activities that merit in-depth studies. In the present work, we aimed at characterizing the molecular mechanism leading to induction of cell death upon treatment of the lymphoblastoid cell line PL104 with caffeic acid phenylethyl ester (CAPE), MG132 and two conventional chemotherapeutic agents, doxorubicine (DOX) and vincristine (VCR). Our results showed several apoptotic hallmarks such as phosphatidylserine (PS) exposure on the outer leaflet of the cell membrane, nuclear fragmentation, and increase sub-G1 DNA content after all treatments. In addition, all four drugs downregulated survivin expression. CAPE and both chemotherapeutic agents reduced Bcl-2, while only CAPE and MG132 significantly increased Bax level. CAPE and VCR treatment induced the collapse of mitochondrial membrane potential (∆ψm). All compounds induced cytochrome c release from mitochondrial compartment to cytosol. However, only MG132 caused the translocation of Smac/DIABLO. Except for VCR treatment, all other drugs increased reactive oxygen species (ROS) production level. All treatments induced activation of caspases 3/7, but only CAPE and MG132 led to the activation of caspase 9. In conclusion, our results indicate that CAPE and MG132 treatment of PL104 cells induced apoptosis through the mitochondrial intrinsic pathway, whereas the apoptotic mechanism induced by DOX and VCR may proceed through the extrinsic pathway.
    Targeted Oncology 02/2013; · 3.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The proteasome inhibitor Bortezomib has been identified as a potent enhancer of TRAIL-induced apoptosis in several human cancers. However, the identification of the underlying molecular mechanisms of this synergistic cell death induction has been ongoing over the last years. A recent study identifies a new mechanism of action for the synergism of TRAIL and Bortezomib.
    Oncotarget 05/2011; 2(5):418-21. · 6.64 Impact Factor

Full-text (2 Sources)

View
22 Downloads
Available from
Jun 1, 2014