Article

Metabolic Syndrome and Risk of Cardiovascular Disease: A Meta-Analysis

Department of Medicine, Tulane University, New Orleans, Louisiana, United States
The American journal of medicine (Impact Factor: 5.3). 11/2006; 119(10):812-9. DOI: 10.1016/j.amjmed.2006.02.031
Source: PubMed

ABSTRACT The use of different definitions of the metabolic syndrome has led to inconsistent results on the association between the metabolic syndrome and risk of cardiovascular disease. We examined the association between the metabolic syndrome and risk of cardiovascular disease.
A MEDLINE search (1966-April 2005) was conducted to identify prospective studies that examined the association between the metabolic syndrome and risk of cardiovascular disease. Information on sample size, participant characteristics, metabolic syndrome definition, follow-up duration, and endpoint assessment was abstracted.
Data from 21 studies met the inclusion criteria and were included. Individuals with the metabolic syndrome, compared to those without, had an increased mortality from all causes (relative risk [RR] 1.35; 95% confidence interval [CI], 1.17-1.56) and cardiovascular disease (RR 1.74; 95% CI, 1.29-2.35); as well as an increased incidence of cardiovascular disease (RR 1.53; 95% CI, 1.26-1.87), coronary heart disease (RR 1.52; 95% CI, 1.37-1.69) and stroke (RR 1.76; 95% CI, 1.37-2.25). The relative risk of cardiovascular disease associated with the metabolic syndrome was higher in women compared with men and higher in studies that used the World Health Organization definition compared with studies that used the Adult Treatment Panel III definition.
This analysis strongly suggests that the metabolic syndrome is an important risk factor for cardiovascular disease incidence and mortality, as well as all-cause mortality. The detection, prevention, and treatment of the underlying risk factors of the metabolic syndrome should become an important approach for the reduction of the cardiovascular disease burden in the general population.

2 Followers
 · 
138 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The conventional paradigm of nonalcoholic fatty liver disease representing the "hepatic manifestation of the metabolic syndrome" is outdated. We identified and summarized longitudinal studies that, supporting the association of nonalcoholic fatty liver disease with either type 2 diabetes mellitus or metabolic syndrome, suggest that nonalcoholic fatty liver disease precedes the development of both conditions. Online Medical databases were searched, relevant articles were identified, their references were further assessed and tabulated data were checked. Although several cross-sectional studies linked nonalcoholic fatty liver disease to either diabetes and other components of the metabolic syndrome, we focused on 28 longitudinal studies which provided evidence for nonalcoholic fatty liver disease as a risk factor for the future development of diabetes. Moreover, additional 19 longitudinal reported that nonalcoholic fatty liver disease precedes and is a risk factor for the future development of the metabolic syndrome. Finally, molecular and genetic studies are discussed supporting the view that aetiology of steatosis and lipid intra-hepatocytic compartmentation are a major determinant of whether fatty liver is/is not associated with insulin resistance and metabolic syndrome. Data support the novel paradigm of nonalcoholic fatty liver disease as a strong determinant for the development of the metabolic syndrome, which has potentially relevant clinical implications for diagnosing, preventing and treating metabolic syndrome. Copyright © 2014 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
    Digestive and Liver Disease 11/2014; 47(3). DOI:10.1016/j.dld.2014.09.020 · 2.89 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin-(1-7) is one of the most important active peptides of the Renin-Angiotensin System (RAS) with recognized cardiovascular relevance; however recently several studies have shown the potential therapeutic role of Ang-(1-7) on treating and preventing metabolic disorders as well. This peptide achieves a special importance considering that in the last few decades obesity and metabolic syndrome (MS) have become a growing worldwide health problem. Angiotensin (Ang) II is the most studied component of RAS and is increased during obesity, diabetes and dyslipidemia (MS); some experimental evidence has shown that Ang II modulates appetite and metabolism as well as mechanisms that induce adipose tissue growth and metabolism in peripheral organs. Recent articles demonstrated that Ang-(1-7)/Mas axis modulates lipid and glucose metabolism and counterregulates the effects of Ang II. Based on these data, angiotensin-converting enzyme 2 (ACE2)/Ang-(1-7)/Mas pathway activation have been advocated as a new tool for treating metabolic diseases. This review summarizes the new evidence from animal and human experiments indicating the use of Ang-(1-7) in prevention and treatment of obesity and metabolic disorders.
    Peptides 07/2014; DOI:10.1016/j.peptides.2014.07.002 · 2.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metabolic syndrome (MetS) has become a health and financial burden worldwide. The MetS definition captures clustering of risk factors that predict higher risk for diabetes mellitus and cardiovascular disease. Our study hypothesis is that additional to genes influencing individual MetS risk factors, genetic variants exist that influence MetS and inflammatory markers forming a predisposing MetS genetic network. To test this hypothesis a staged approach was undertaken. (a) We analyzed 17 metabolic and inflammatory traits in more than 85,500 participants from 14 large epidemiological studies within the Cross Consortia Pleiotropy Group. Individuals classified with MetS (NCEP definition), versus those without, showed on average significantly different levels for most inflammatory markers studied. (b) Paired average correlations between 8 metabolic traits and 9 inflammatory markers from the same studies as above, estimated with two methods, and factor analyses on large simulated data, helped in identifying 8 combinations of traits for follow-up in meta-analyses, out of 130,305 possible combinations between metabolic traits and inflammatory markers studied. (c) We performed correlated meta-analyses for 8 metabolic traits and 6 inflammatory markers by using existing GWAS published genetic summary results, with about 2.5 million SNPs from twelve predominantly largest GWAS consortia. These analyses yielded 130 unique SNPs/genes with pleiotropic associations (a SNP/gene associating at least one metabolic trait and one inflammatory marker). Of them twenty-five variants (seven loci newly reported) are proposed as MetS candidates. They map to genes MACF1, KIAA0754, GCKR, GRB14, COBLL1, LOC646736-IRS1, SLC39A8, NELFE, SKIV2L, STK19, TFAP2B, BAZ1B, BCL7B, TBL2, MLXIPL, LPL, TRIB1, ATXN2, HECTD4, PTPN11, ZNF664, PDXDC1, FTO, MC4R and TOMM40. Based on large data evidence, we conclude that inflammation is a feature of MetS and several gene variants show pleiotropic genetic associations across phenotypes and might explain a part of MetS correlated genetic architecture. These findings warrant further functional investigation.
    Molecular Genetics and Metabolism 05/2014; 112(4). DOI:10.1016/j.ymgme.2014.04.007 · 2.83 Impact Factor