Inactivation of the group A Streptococcus regulator srv results in chromosome wide reduction of transcript levels, and changes in extracellular levels of Sic and SpeB

Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
FEMS Immunology & Medical Microbiology (Impact Factor: 2.55). 12/2006; 48(2):283-92. DOI: 10.1111/j.1574-695X.2006.00150.x
Source: PubMed

ABSTRACT Group A Streptococcus is characterized by the ability to cause a diverse number of human infections including pharyngitis, necrotizing fasciitis, toxic shock syndrome, and acute rheumatic fever, yet the regulation of streptococcal genes involved in disease processes and survival in the host is not completely understood. Genome scale analysis has revealed a complex regulatory network including 13 two-component regulatory systems and more than 100 additional putative regulators, the majority of which remain uncharacterized. Among these is the streptococcal regulator of virulence, Srv, the first Group A Streptococcus member of the Crp/Fnr family of transcriptional regulators. Previous work demonstrated that the loss of srv resulted in a significant decrease in Group A Streptococcus virulence. To begin to define the gene products influenced by Srv, we combined microarray and two-dimensional gel electrophoresis analysis. Loss of srv results in a chromosome wide reduction of gene transcription and changes in the production of the extracellular virulence factors Sic (streptococcal inhibitor of complement) and SpeB (cysteine proteinase). Sic levels are reduced in the srv mutant, whereas the extracellular concentration and activity of SpeB is increased. These data link Srv to the increasingly complex GAS regulatory network.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recently, biofilms have become a topic of interest in the study of the human pathogen group A Streptococcus (GAS). In this study, we sought to learn more about the make-up of these structures and gain insight into biofilm regulation. Enzymic studies indicated that biofilm formation by GAS strain MGAS5005 required an extracellular protein and DNA component(s). Previous results indicated that inactivation of the transcriptional regulator Srv in MGAS5005 resulted in a significant decrease in virulence. Here, inactivation of Srv also resulted in a significant decrease in biofilm formation under both static and flow conditions. Given that production of the extracellular cysteine protease SpeB is increased in the srv mutant, we tested the hypothesis that increased levels of active SpeB may be responsible for the reduction in biofilm formation. Western immunoblot analysis indicated that SpeB was absent from MGAS5005 biofilms. Complementation of MGAS5005Deltasrv restored the biofilm phenotype and eliminated the overproduction of active SpeB. Inhibition of SpeB with E64 also restored the MGAS5005Deltasrv biofilm to wild-type levels.
    Microbiology 02/2009; 155(Pt 1):46-52. DOI:10.1099/mic.0.021048-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group A Streptococcus (GAS) is a versatile human pathogen causing diseases ranging from uncomplicated mucosal infections to life-threatening invasive disease. The development of human-relevant animal models of GAS infection and introduction of new technologies have markedly accelerated the pace of discoveries related to GAS host-pathogen interactions. For example, recently investigators have identified pili on the GAS cell surface and learned that they are key components for adherence to eukaryotic cell surfaces. Similarly, the recent development of a transgenic mouse expressing human plasminogen has resulted in new understanding of the molecular processes contributing to invasive infection. Improved understanding of the molecular mechanisms underlying the pathogenesis of GAS pharyngeal, invasive and other infections holds the promise of assisting with the development of novel preventive or therapeutic agents for this prevalent human pathogen.
    Cellular Microbiology 09/2008; 11(1):1-12. DOI:10.1111/j.1462-5822.2008.01225.x · 4.82 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Group A Streptococcus (GAS) possesses a complex regulatory system enabling the organism to colonize a range of physiologically distinct host sites. Within this network of regulators is the streptococcal regulator of virulence (Srv). Srv is a member of the CRP/FNR family of transcriptional regulators and is most similar to pleiotropic regulatory factor A (PrfA), a positive regulator of virulence in Listeria monocytogenes. Members of this family possess a characteristic C-terminal helix-turn-helix motif (HTH) that facilitates binding to DNA targets. Genome scanning identified four targets in GAS that were similar to the consensus DNA target recognized by PrfA. Furthermore, previous amino acid sequence alignments identified conserved residues within the Srv HTH which are necessary for function in PrfA and CRP. Here we investigated the ability of Srv to interact with DNA and evaluated the role of the HTH in this interaction. Purified recombinant Srv (rSrv) was found to co-purify with an untagged form of Srv. Glutaraldehyde cross-linking and gel-filtration chromatography indicated that this co-purification is likely due to the ability of Srv to oligomerize. Electrophoretic mobility shift assays (EMSAs) demonstrated that rSrv retarded the mobility of DNA targets and a supershift analysis confirmed the observation was rSrv-dependent. Competition EMSA indicated that rSrv had a higher relative affinity for the DNA targets studied than non-specific DNA. Site-directed mutagenesis of residues predicted to be in or near the HTH resulted in a decrease or abrogation of DNA binding. Complementation of MGAS5005Deltasrv with one of these site-directed mutants failed to restore wild-type SpeB activity. Taken together, these data suggest that the Srv HTH is necessary for DNA binding and Srv function.
    Microbiology 08/2008; 154(Pt 7):1998-2007. DOI:10.1099/mic.0.2007/013466-0 · 2.84 Impact Factor


Available from