Article

Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEepsilon4 in young healthy adults.

Geriatric Psychiatry Branch, National Institute of Mental Health, Bethesda, Maryland, USA.
Neuroreport (Impact Factor: 1.64). 11/2006; 17(15):1585-90. DOI: 10.1097/01.wnr.0000234745.27571.d1
Source: PubMed

ABSTRACT Functional neural alterations are present in middle-aged to late-aged healthy individuals carrying the epsilon4 allele of the apolipoprotein E (APOEepsilon4) gene, a known risk factor for Alzheimer's disease. Neural activity was measured in young adults with and without the epsilon4 allele (APOEepsilon4+ and APOEepsilon4-) by functional magnetic resonance imaging and magnetoencephalography while performing a visual working memory task on two separate days. Greater activity was observed in frontal areas and cingulate gyri in APOEepsilon4+ participants by both functional magnetic resonance imaging and magnetoencephalography with regional blood oxygenation level-dependent responses correlating with increased theta band power. The findings suggest that the presence of the APOEepsilon4 allele has physiological consequences before aging that may contribute to risk for Alzheimer's disease.

0 Followers
 · 
63 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Alzheimer's Disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease -modifying therapies.
    Biochimica et Biophysica Acta 04/2014; 1842(9). DOI:10.1016/j.bbadis.2014.04.012 · 4.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although Alzheimer’s Disease (AD) is the most common neurodegenerative disease, the etiology of AD is not well understood. In some cases, genetic factors explain AD risk, but a high percentage of late-onset AD is unexplained. The fact that AD is associated with a number of physical and systemic manifestations suggests that AD is a multifactorial disease that affects both the CNS and periphery. Interestingly, a common feature of many systemic processes linked to AD is involvement in energy metabolism. The goals of this review are to 1) explore the evidence that peripheral processes contribute to AD risk, 2) explore ways that AD modulates whole-body changes, and 3) discuss the role of genetics, mitochondria, and vascular mechanisms as underlying factors that could mediate both central and peripheral manifestations of AD. Despite efforts to strictly define AD as a homogeneous CNS disease, there may be no single etiologic pathway leading to the syndrome of AD dementia. Rather, the neurodegenerative process may involve some degree of baseline genetic risk that is modified by external risk factors. Continued research into the diverse but related processes linked to AD risk is necessary for successful development of disease –modifying therapies.
    Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 01/2014; · 5.09 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Possession of the APOE-ε4 allele is the best established genetic risk factor for sporadic Alzheimer's disease (AD), while the ε2 allele may confer protection against the disease. Previous functional magnetic resonance imaging (fMRI) studies have shown an effect of APOE genotype on brain function, typically by comparing only ε4 carriers with noncarriers. Here we included a wide range of genotype groups to determine how closely the effects of APOE on brain function are related to differences in relative risk for AD. We used functional magnetic resonance imaging (fMRI) to compare the pattern of activation during an episodic encoding task and during a counting Stroop task in 76 adults, aged 32 to 55, with different APOE genotypes (23 ε2/ε3, 20 ε3/ε3, 26 ε3/ε4, and 7 ε4/ε4). Strikingly, participants with an increased risk (ε4 carriers) and with a decreased risk (ε2 carriers) for AD both showed increased activation, relative to ε3 homozygotes, during both tasks. The increased activation was due to decreased deactivation or paradoxical activation of nontask-related regions of the brain, which suggests an intrinsic effect of APOE on the differentiation of functional cortical networks. These results question the often assumed link between APOE, the blood oxygenation level dependent (BOLD) response, and AD risk.
    Neurobiology of aging 01/2011; 33(3):618.e1-618.e13. DOI:10.1016/j.neurobiolaging.2010.11.011 · 4.85 Impact Factor