Article

Activation mechanism for CRAC current and store-operated Ca2+ entry: calcium influx factor and Ca2+-independent phospholipase A2beta-mediated pathway.

Boston University School of Medicine, Boston, Massachusetts 02118, USA.
Journal of Biological Chemistry (Impact Factor: 4.6). 12/2006; 281(46):34926-35. DOI: 10.1074/jbc.M606504200
Source: PubMed

ABSTRACT Here we tested the role of calcium influx factor (CIF) and calcium-independent phospholipase A2 (iPLA2) in activation of Ca2+ release-activated Ca2+ (CRAC) channels and store-operated Ca2+ entry in rat basophilic leukemia (RBL-2H3) cells. We demonstrate that 1) endogenous CIF production may be triggered by Ca2+ release (net loss) as well as by simple buffering of free Ca2+ within the stores, 2) a specific 82-kDa variant of iPLA2beta and its corresponding activity are present in membrane fraction of RBL cells, 3) exogenous CIF (extracted from other species) mimics the effects of endogenous CIF and activates iPLA2beta when applied to cell homogenates but not intact cells, 4) activation of ICRAC can be triggered in resting RBL cells by dialysis with exogenous CIF, 5) molecular or functional inhibition of iPLA2beta prevents activation of ICRAC, which could be rescued by cell dialysis with a human recombinant iPLA2beta, 6) dependence of ICRAC on intracellular pH strictly follows pH dependence of iPLA2beta activity, and 7) (S)-BEL, a chiral enantiomer of suicidal substrate specific for iPLA2beta, could be effectively used for pharmacological inhibition of ICRAC and store-operated Ca2+ entry. These findings validate and significantly advance our understanding of the CIF-iPLA2-dependent mechanism of activation of ICRAC and store-operated Ca2+ entry.

0 Bookmarks
 · 
77 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent compelling evidences from rodent and human studies raise the possibility for an additional sixth taste modality devoted to oro-gustatory perception of dietary lipids. Understanding the mechanisms underlying oro-gustatory detection of dietary fat is critical for the prevention and treatment of obesity. A number of studies have suggested that lingual CD36, a glycoprotein, highly expressed by circumvallate papillae of the tongue, is implicated in the perception of dietary fat taste. G protein-coupled receptors (GPCRs) are important signaling molecules for many aspects of cellular functions. It has been shown that these receptors, particularly GPR120, are also involved in lipid taste perception. We have shown that dietary long-chain fatty acids (LCFAs), in CD36-positive taste bud cells (TBC), induce increases in free intracellular Ca(2+) concentrations, [Ca(2+)]i, by recruiting Ca(2+) from endoplasmic reticulum (ER) pool via inositol 1,4,5-triphosphate production, followed by Ca(2+) influx via opening of store-operated Ca(2+) (SOC) channels. GPR120 is also coupled to increases in [Ca(2+)]i by dietary fatty acids. We observed that stromal interaction molecule 1 (STIM1), a sensor of Ca(2+) depletion in the ER, mediated fatty acid-induced Ca(2+) signaling and spontaneous preference for fat in the mouse. In this review article, we discuss the recent advances and unresolved roles of CD36 and GPR120 in lipid taste signaling in taste bud cells.
    Biochimie 06/2013; · 3.14 Impact Factor
  • Source
    Channels 10/2014; 1(4). · 2.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deviations from physiological pH (∼pH 7.2) as well as altered Ca(2+) signaling play important roles in immune disease and cancer. One of the most ubiquitous pathways for cellular Ca(2+) influx is the store-operated Ca(2+) entry (SOCE) or Ca(2+) release-activated Ca(2+) current (ICRAC), which is activated upon depletion of intracellular Ca(2+) stores. We here show that extracellular and intracellular changes in pH regulate both endogenous ICRAC in Jurkat T lymphocytes and RBL2H3 cells, and heterologous ICRAC in HEK293 cells expressing the molecular components STIM1/2 and Orai1/2/3 (CRACM1/2/3). We find that external acidification suppresses, and alkalization facilitates IP3-induced ICRAC. In the absence of IP3, external alkalization did not elicit endogenous ICRAC but was able to activate heterologous ICRAC in HEK293 cells expressing Orai1/2/3 and STIM1 or STIM2. Similarly, internal acidification reduced IP3-induced activation of endogenous and heterologous ICRAC, while alkalization accelerated its activation kinetics without affecting overall current amplitudes. Mutation of two aspartate residues to uncharged alanine amino acids (D110/112A) in the first extracellular loop of Orai1 significantly attenuated both the inhibition of ICRAC by external acidic pH as well as its facilitation by alkaline conditions. We conclude that intra- and extracellular pH differentially regulates ICRAC. While intracellular pH might affect aggregation and/or binding of STIM to Orai, external pH seems to modulate ICRAC through its channel pore, which in Orai1 is partially mediated by residues D110 and D112.
    Cell Calcium 09/2014; · 4.21 Impact Factor