Improved cardiac function in infarcted mice after treatment with pluripotent embryonic stem cells

Department of Cell Biology, Neurobiology, and Anatomy and the Cardiovascular Center Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
The Anatomical Record Part A Discoveries in Molecular Cellular and Evolutionary Biology 11/2006; 288(11):1216-24. DOI: 10.1002/ar.a.20388
Source: PubMed

ABSTRACT Because pluripotent embryonic stem cells (ESCs) are able to differentiate into any tissue, they are attractive agents for tissue regeneration. Although improvement of cardiac function has been observed after transplantation of pluripotent ESCs, the extent to which these effects reflect ESC-mediated remuscularization, revascularization, or paracrine mechanisms is unknown. Moreover, because ESCs may generate teratomas, the ability to predict the outcome of cellular differentiation, especially when transplanting pluripotent ESCs, is essential; conversely, a requirement to use predifferentiated ESCs would limit their application to highly characterized subsets that are available in limited numbers. In the experiments reported here, we transplanted low numbers of two murine ESC lines, respectively engineered to express a beta-galactosidase gene from either a constitutive (elongation factor) or a cardiac-specific (alpha-myosin heavy chain) promoter, into infarcted mouse myocardium. Although ESC-derived tumors formed within the pericardial space in 21% of injected hearts, lacZ histochemistry revealed that engraftment of ESC was restricted to the ischemic myocardium. Echocardiographic monitoring of ESC-injected hearts that did not form tumors revealed functional improvements by 4 weeks postinfarction, including significant increases in ejection fraction, circumferential fiber shortening velocity, and peak mitral blood flow velocity. These experiments indicate that the infarcted myocardial environment can support engraftment and cardiomyogenic differentiation of pluripotent ESCs, concomitant with partial functional recovery.


Available from: Zhi-Dong Ge, May 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small GTPase Ras-related protein 1 (Rap1b) controls several basic cellular phenomena, and its deletion in mice leads to several cardiovascular defects, including impaired adhesion of blood cells and defective angiogenesis. We found that Rap1b(-/-) mice develop cardiac hypertrophy and hypertension. Therefore, we examined the function of Rap1b in regulation of blood pressure. RAP1B: (-/-) mice developed cardiac hypertrophy and elevated blood pressure, but maintained a normal heart rate. Correcting elevated blood pressure with losartan, an angiotensin II type 1 receptor, alleviated cardiac hypertrophy in Rap1b(-/-) mice, suggesting a possibility that cardiac hypertrophy develops secondary to hypertension. The indices of renal function and plasma renin activity were normal in Rap1b(-/-) mice. Ex vivo, we examined whether the effect of Rap1b deletion on smooth muscle-mediated vessel contraction and endothelium-dependent vessel dilation, 2 major mechanisms controlling basal vascular tone, was the basis for the hypertension. We found increased contractility on stimulation with a thromboxane analog or angiotensin II or phenylephrine along with increased inhibitory phosphorylation of myosin phosphatase under basal conditions consistent with elevated basal tone and the observed hypertension. Cyclic adenosine monophosphate-dependent relaxation in response to Rap1 activator, Epac, was decreased in vessels from Rap1b(-/-) mice. Defective endothelial release of dilatory nitric oxide in response to elevated blood flow leads to hypertension. We found that nitric oxide-dependent vasodilation was significantly inhibited in Rap1b-deficient vessels. This is the first report to indicate that Rap1b in both smooth muscle and endothelium plays a key role in maintaining blood pressure by controlling normal vascular tone.
    Arteriosclerosis Thrombosis and Vascular Biology 05/2014; 34(7). DOI:10.1161/ATVBAHA.114.303678 · 5.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Reprogramming of somatic cells to generate induced pluripotent stem cells (iPS), has been one of the most important advances in biology in recent years. The identification of a group of transcription factors and more recently of some chemical compounds that can induce pluripotency in somatic cells provides a unique opportunity to study cellular and molecular mechanisms of cell differentiation and promises the possibility of generating patient-specific pluripotent stem cells for the treatment of multiple diseases in protocols of cell therapy and regenerative medicine.
    06/2009; 17(2):252-263.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The discovery of the interesting intrinsic properties of graphene, a two-dimensional nanomaterial, has boosted further research and development for various types of applications from electronics to biomedicine. During the last decade, graphene and several graphene-derived materials, such as graphene oxide, carbon nanotubes, activated charcoal composite, fluorinated graphenes and three-dimensional graphene foams, have been extensively explored as components of biosensors or theranostics, or to remotely control cell-substrate interfaces, because of their remarkable electro-conductivity. To date, despite the intensive progress in human stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. Interestingly, most of the recent in vitro studies indicate that graphene-based nanomaterials (i.e. mainly graphene, graphene oxide and carbon nanotubes) promote stem cell adhesion, growth, expansion and differentiation. Although cell viability in vitro is not affected, their potential nanocytoxicity (i.e. nanocompatibility and consequences of uncontrolled nanobiodegradability) in a clinical setting using humans remains unknown. Therefore, rigorous internationally standardized clinical studies in humans that would aim to assess their nanotoxicology are requested. In this paper we report and discuss the recent and pertinent findings about graphene and derivatives as valuable nanomaterials for stem cell research (i.e. culture, maintenance and differentiation) and tissue engineering, as well as for regenerative, translational and personalized medicine (e.g. bone reconstruction, neural regeneration). Also, from scarce nanotoxicological data, we also highlight the importance of functionalizing graphene-based nanomaterials to minimize the cytotoxic effects, as well as other critical safety parameters that remain important to take into consideration when developing nanobionanomaterials. Copyright © 2014 John Wiley & Sons, Ltd.
    Journal of Tissue Engineering and Regenerative Medicine 06/2014; DOI:10.1002/term.1910 · 4.43 Impact Factor