Dalisay DS, Webb JS, Scheffel A, Svenson C, James S, Holmström C et al. A mannose-sensitive haemagglutinin (MSHA)-like pilus promotes attachment of Pseudoalteromonas tunicata cells to the surface of the green alga Ulva australis. Microbiology 152: 2875-2883

Department of Chemistry and Biochemistry, University of California, San Diego, San Diego, California, United States
Microbiology (Impact Factor: 2.56). 11/2006; 152(Pt 10):2875-83. DOI: 10.1099/mic.0.29158-0
Source: PubMed


This study demonstrates that attachment of the marine bacterium Pseudoalteromonas tunicata to the cellulose-containing surface of the green alga Ulva australis is mediated by a mannose-sensitive haemagglutinin (MSHA-like) pilus. We have identified an MSHA pilus biogenesis gene locus in P. tunicata, termed msh/1/2JKLMNEGFBACDOPQ, which shows significant homology, with respect to its genetic characteristics and organization, to the MSHA pilus biogenesis gene locus of Vibrio cholerae. Electron microscopy studies revealed that P. tunicata wild-type cells express flexible pili peritrichously arranged on the cell surface. A P. tunicata mutant (SM5) with a transposon insertion in the mshJ region displayed a non-piliated phenotype. Using SM5, it has been demonstrated that the MSHA pilus promotes attachment of P. tunicata wild-type cells in polystyrene microtitre plates, as well as to microcrystalline cellulose and to the living surface of U. australis. P. tunicata also demonstrated increased pilus production in response to cellulose and its monomer constituent cellobiose. The MSHA pilus thus functions as a determinant of attachment in P. tunicata, and it is proposed that an understanding of surface sensing mechanisms displayed by P. tunicata will provide insight into specific ecological interactions that occur between this bacterium and higher marine organisms.

Download full-text


Available from: Doralyn Dalisay, Oct 05, 2015
25 Reads
  • Source
    • "There were 17 genes in a cluster coding for a mannose-sensitive hemagglutinin (MSHA) biogenesis locus (Online Resource 5) in NW4327. The MSHA pili operon structure of NW4327 closely resembled that of P. tunicata (Dalisay et al. 2006) in which the MSHA pilus played a role in the attachment of the bacterium to abiotic and living surfaces (Dalisay et al. 2006). While NW4327 lacked the mshF gene found in P. tunicata, both strains contained the two mshI genes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Sponge diseases have increased dramatically, yet the causative agents of disease outbreaks have eluded identification. We undertook a polyphasic taxonomic analysis of the only confirmed sponge pathogen and identified it as a novel strain of Pseudoalteromonas agarivorans. 16S ribosomal RNA (rRNA) and gyraseB (gyrB) gene sequences along with phenotypic characteristics demonstrated that strain NW4327 was most closely related to P. agarivorans. DNA-DNA hybridization and in silico genome comparisons established NW4327 as a novel strain of P. agarivorans. Genes associated with type IV pili, mannose-sensitive hemagglutinin pili, and curli formation were identified in NW4327. One gene cluster encoding ATP-binding cassette (ABC) transporter, HlyD and TolC, and two clusters related to the general secretion pathway indicated the presence of type I secretion system (T1SS) and type II secretion system (T2SS), respectively. A contiguous gene cluster of at least 19 genes related to type VI secretion system (T6SS) which included all 13 core genes was found. The absence of T1SS and T6SS in nonpathogenic P. agarivorans S816 established NW4327 as the virulent strain. Serine proteases and metalloproteases of the classes S8, S9, M4, M6, M48, and U32 were identified in NW4327, many of which can degrade collagen. Collagenase activity in NW4327 and its absence in the nonpathogenic P. agarivorans KMM 255(T) reinforced the invasiveness of NW4327. This is the first report unambiguously identifying a sponge pathogen and providing the first insights into the virulence genes present in any pathogenic Pseudoalteromonas genome. The investigation supports a theoretical study predicting high abundance of terrestrial virulence gene homologues in marine bacteria.
    Marine Biotechnology 04/2015; 17(4). DOI:10.1007/s10126-015-9627-y · 3.27 Impact Factor
  • Source
    • "Here we have begun to fill this knowledge gap by investigating the mechanisms that facilitate interactions between the marine bacterium P. tunciata with its macroalgal host. We found that a P. tunicata ptlL32 strain attached with a greatly reduced capacity to the biotic surfaces (Figures 2–4), a finding that is in line with previous reports indicating that the colonization of U. australis by P. tunicata involves multiple adhesins (Dalisay et al., 2006; Thomas et al., 2008). "
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterium Pseudoalteromonas tunicata is a common surface colonizer of marine eukaryotes, including the macroalga Ulva australis.Genomic analysis of P. tunicata identified genes potentially involved in surface colonization, including genes with homology to bacterial virulence factors that mediate attachment. Of particular interest is the presence of a gene, designated ptlL32, encoding an ortholog to the Leptospira lipoprotein LipL32, which has been shown to facilitate the interaction of Leptospira sp. with host extracellular matrix (ECM) structures and is thought to be an important virulence trait for pathogenic Leptospira. To investigate the role of PtlL32 in the colonization by P. tunicata we constructed and characterized a ΔptlL32 mutant strain. Whilst P. tunicata ΔptlL32 bound to an abiotic surface with the same capacity as the wild type strain, it had a marked effect on the ability of P. tunicata to bind to ECM, suggesting a specific role in attachment to biological surfaces. Loss of PtlL32 also significantly reduced the capacity for P. tunciata to colonize the host algal surface demonstrating a clear role for this protein as a host-colonization factor. PtlL32 appears to have a patchy distribution across specific groups of environmental bacteria and phylogenetic analysis of PtlL32 orthologous proteins from non-Leptospira species suggests it may have been acquired via horizontal gene transfer between distantly related lineages. This study provides the first evidence for an attachment function for a LipL32-like protein outside the Leptospira and thereby contributes to the understanding of host colonization in ecologically distinct bacterial species.
    Frontiers in Microbiology 07/2014; 5:323. DOI:10.3389/fmicb.2014.00323 · 3.99 Impact Factor
  • Source
    • "While our data indicates that a similar link between oxidative stress and the MI pathway may exist in E. siliculosus, it remains to be assessed whether the underlying functions or regulatory mechanisms are the same as those found in A. thaliana. Besides the direct signaling functions of MI, multi-phosphorylated forms of inositol such as IP5 or IP6 are key cofactors of the plant auxin (SCFTIR1) and jasmonate (SCFCOI1) ubiquitin ligase receptor complexes, therefore playing fundamental roles in phytohormone perception [44]. Methyl-jasmonate (MeJA) was detected in our experiments, but its contents did not change significantly (p > 0.05) under the tested conditions. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Brown algae are sessile macro-organisms of great ecological relevance in coastal ecosystems. They evolved independently from land plants and other multicellular lineages, and therefore hold several original ontogenic and metabolic features. Most brown algae grow along the coastal zone where they face frequent environmental changes, including exposure to toxic levels of heavy metals such as copper (Cu). Results We carried out large-scale transcriptomic and metabolomic analyses to decipher the short-term acclimation of the brown algal model E. siliculosus to Cu stress, and compared these data to results known for other abiotic stressors. This comparison demonstrates that Cu induces oxidative stress in E. siliculosus as illustrated by the transcriptomic overlap between Cu and H2O2 treatments. The common response to Cu and H2O2 consisted in the activation of the oxylipin and the repression of inositol signaling pathways, together with the regulation of genes coding for several transcription-associated proteins. Concomitantly, Cu stress specifically activated a set of genes coding for orthologs of ABC transporters, a P1B-type ATPase, ROS detoxification systems such as a vanadium-dependent bromoperoxidase, and induced an increase of free fatty acid contents. Finally we observed, as a common abiotic stress mechanism, the activation of autophagic processes on one hand and the repression of genes involved in nitrogen assimilation on the other hand. Conclusions Comparisons with data from green plants indicate that some processes involved in Cu and oxidative stress response are conserved across these two distant lineages. At the same time the high number of yet uncharacterized brown alga-specific genes induced in response to copper stress underlines the potential to discover new components and molecular interactions unique to these organisms. Of particular interest for future research is the potential cross-talk between reactive oxygen species (ROS)-, myo-inositol-, and oxylipin signaling.
    BMC Plant Biology 05/2014; 14(1):116. DOI:10.1186/1471-2229-14-116 · 3.81 Impact Factor
Show more