Article

Optically trapping confocal Raman microscopy of individual lipid vesicles: kinetics of phospholipase A(2)-catalyzed hydrolysis of phospholipids in the membrane bilayer.

Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, USA.
Analytical Chemistry (Impact Factor: 5.7). 11/2006; 78(19):6928-35. DOI: 10.1021/ac061049b
Source: PubMed

ABSTRACT Phospholipase A2 (PLA2)-catalyzed hydrolysis at the sn-2 position of 1,2-dimyristoyl-sn-glycero-3-phosphocholine in optically trapped liposomes is monitored in situ using confocal Raman microscopy. Individual optically trapped liposomes (0.6 microm in diameter) are exposed to PLA2 isolated from cobra (Naja naja naja) venom at varying enzyme concentrations. The relative Raman scattering intensities of C-C stretching vibrations from the trans and gauche conformers of the acyl chains are correlated directly with the extent of hydrolysis, allowing the progress of the reaction to be monitored in situ on a single vesicle. In dilute vesicle dispersions, the technique allows the much higher local concentration of lipid molecules in a single vesicle to be detected free of interferences from the surrounding solution. Observing the local composition of an optically trapped vesicle also allows one to determine whether the products of enzyme-catalyzed hydrolysis remain associated with the vesicle or dissolve into solution. The observed reaction kinetics exhibited a time lag prior to the rapid hydrolysis. The lag time varied inversely with the enzyme concentration, which is consistent with the products of enzyme-catalyzed lipid hydrolysis reaching a critical concentration that allows the enzyme to react at a much faster rate. The turnover rate of membrane-bound enzyme determined by Raman microscopy during the rapid, burst-phase kinetics was 1200 s(-1). Based on previous measurements of the equilibrium for PLA2 binding to lipid membranes, the average number of enzyme molecules responsible for catalyzing the hydrolysis of lipid on a single optically trapped vesicle is quite small, only two PLA2 molecules at the lowest enzyme concentration studied.

0 Bookmarks
 · 
35 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.
    Annual Review of Analytical Chemistry (2008) 06/2010; 4:343-66. · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The in situ analysis of small, dispersed particles in liquids is a challenging problem, the successful solution to which influences diverse applications of colloidal particles in materials science, synthetic chemistry, and molecular biology. Optical trapping of small particles with a tightly focused laser beam can be combined with confocal Raman microscopy to provide molecular structure information about individual, femtogram-sized particles in liquid samples. In this review, we consider the basic principles of combining optical trapping and confocal Raman spectroscopy, then survey the applications that have been developed through the combination of these techniques and their use in the analysis of particles dispersed in liquids.
    Annual Review of Analytical Chemistry (2008) 06/2010; 3:277-97. · 8.60 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Select transmembrane proteins found in biogenic membranes are known to facilitate rapid bidirectional flip-flop of lipids between the membrane leaflets, while others have no little or no effect. The particular characteristics which determine the extent to which a protein will facilitate flip-flop are still unknown. To determine if the relative polarity of the transmembrane protein segment influences its capacity for facilitation of flip-flop, we have studied lipid flip-flop dynamics for bilayers containing the peptides WALP23 and melittin. WALP23 is used as a model hydrophobic peptide, while melittin consists of both hydrophobic and hydrophilic residues. Sum-frequency vibrational spectroscopy (SFVS) was used to characterize the bilayers and determine the kinetics of flip-flop for the lipid component, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), within the mixed bilayers. The kinetic data were utilized to determine the activation thermodynamics for DSPC flip-flop in the presence of the peptides. Melittin was found to significantly reduce the free energy barrier to DSPC flip-flop when incorporated into the bilayer at 1 mol.%, while incorporation of WALP23 at the same concentration led to a more modest reduction of the free energy barrier. The possible mechanisms by which these peptides facilitate flip-flop are analyzed and discussed in terms of the observed activation thermodynamics.
    Journal of Structural Biology 01/2009; · 3.36 Impact Factor