Studies of an Fe9 Tridiminished Icosahedron

Department of Physics and Astronomy , Iowa State University, Ames, Iowa, United States
Chemistry (Impact Factor: 5.7). 12/2006; 12(35):8961-8. DOI: 10.1002/chem.200600400
Source: PubMed

ABSTRACT The synthesis and structural characterization of a nonanuclear FeIII cage complex is reported. The nine iron centers in [Fe9(mu3-O)4(O3PPh)3(O2CCMe3)13] lie on the vertices of an incomplete icosahedron, with the P atoms of triphenylphosphonate at the other three vertices. The paramagnetic core therefore describes a tridiminished icosahedron. Magnetic studies suggest an S=1/2 ground state for the molecule. Analysis of exchange paths and the susceptibility data point to the interpretation that the cluster can be divided into two nearly decoupled sections: an {Fe6O3} section, with an S=0 ground state, in which three oxo-centered triangles bound a central triangle that is not oxo-centered; and an {Fe3O} triangle with S=1/2. The analysis of the susceptibility data leads to a Heisenberg model based on three significant antiferromagnetic exchange interactions, with values of 173.7 cm-1 in the {Fe3O} triangle, and 30.9 and 19.1 cm-1 within the {Fe6O3} section, while the exchange between them is <1 cm-1. With these assignments, the theoretical low-temperature differential susceptibility is also in very good agreement with measurements up to 50 T. Magnetic measurements in the milli-kelvin range reveal striking hysteresis loops and magnetization reversals associated with a Landau-Zener-Stückelberg (LZS) transition as enhanced by the occurrence of a phonon bottleneck.

Show more

Rajaraman Gopalan